
FFT Application II Page 1

FFT II: Demonstration Application
for the

Cmpware CMP-DK
(Demo Version 2.0 for Eclipse 3.0)

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is a
multiprocessor simulation and software development environment. It provides fast and
efficient modeling of multiprocessor architectures as well as support for software
development on such systems. The goal of supporting software development is
achieved by providing an interactive, display-rich environment that permits large
amounts of information to be displayed in a fast, simple and uncluttered format. Such
capabilities are essential in analyzing the behavior of multiprocessor systems.

This demonstration version of the Cmpware CMP-DK (version 2.0) for Eclipse 3.0 and
higher contains all features of the standard toolkit, but restricts the simulation model to
a 3 x 3 heterogeneous array of MIPS32 and SPARC-8 processors. All simulation
capabilities and displays are included. This includes:

Demonstration Applications

Avaliable for use with the Cmpware CMP-DK version 2.0 is a series of demonstration
applications which are presented to introduce some of the features in the CMP-DK.
These applications start with small, simple programs gradually building up to more
complex applications exploiting relatively low-level parallelism. These demonstrations
stand alone and can be studied in any order, but it is best to start with the early
examples, which are smaller and simpler and build up to the larger ones. This provides

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

 Source Code Tracing
 Source Code Variables
 Disassembly
 Memory Display
 Power Estimator

 General Purpose Registers
 Special Purpose Registers
 Command Line Interface
 Link Utilization

FFT Application II Page 2

a tutorial-like introduction to the features in the Cmpware CMP-DK.

While these demonstrations cover the application development aspects of this tool,
much of the power in the Cmpware CMP-DK is in the ability to quickly model relatively
complex multiprocessor systems. This modeling activity is reserved for licensed copies
of the software. For more information on getting licensed copies of the Cmpware CMP-
DK, contact Cmpware at info@cmpware.com.

The groups of files in this tutorial package are as follows:

 Introduction - An introduction to all of the applications
 Simple - A simple, single processor test application
 Ping Pong - a simple two processor application
 Hetero - the Ping Pong application on two different types of processors
 FIR Filter - A multiprocessor Finite Impulse Response (FIR) Filter
 AES Encryption - A multiprocessor AES encryption implementation
 FFT Filter - a multiprocessor FFT filter using shared memory
 FFT Filter 2 - a multiprocessor FFT filter using communication channels

These example applications assume that the Cmpware CMP-DK has already been
successfully installed on your system. For more information on acquiring and installing
either the free demonstration version or the fully licensed version, see the Cmpware
web site.

The source and compiled code for these demonstration applications can be
downloaded from the Cmpware Web site as a compressed ZIP archive at:

http://www.cmpware.com/Apps/CmpwareApps_2_0.zip

The Fast Fourier Transform (FFT) Application II

The second implementation of the Fast Fourier Transform (FFT) application extends
the ideas in the previous example applications. In particular this application revisits the
FFT application using only Shared Register communication channels instead of shared
memory. While some algorithms such as the FFT lend themselves well to shared
memory implementations, the synchronization and control issues tend to make correct
implementation and debug more difficult. This version of the FFT algorithm uses
Shared Register communications channels to copy the blocks of data into local memory
instead of using the shared memory approach. At the end of this document, the
performance impact of this approach will be evaluated.

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 3

The FFT II code is all in the compressed ZIP archive under the FFT-2 directory, and
contains source code, Makefile, linker directives file, compiled relocatable object files
and finally, fully linked executable ELF files. In fact, all of the demonstration
applications will contain these types of files. All have been built using the Gnu GCC
compiler with a version higher than 3.0. If you have access to a MIPS32 compiler
which produces standard ELF executable with DWARF2 debug information, you may
modify these files and re-compile them and test the results and use them in the
Cmpware CMP-DK.

Running the Self Hosted FFT II Application

The FFT algorithm is used extensively in digital signal processing. It is used to convert
time domain signals to the frequency domain where various types of frequency oriented
filtering can take place. The FFT algorithm is more compute intensive than the other
examples discussed for the Cmpware CMP-DK and also tends to have a more complex
communication pattern. The details of the FFT algorithm are beyond the scope of this
document and will not be covered here, but any standard textbook on digital signal
processing should cover the FFT adequately.

The source code for the implementation used in this example is include in the
appendicies at the end of this document. The implementation is fairly straight forward
and every attempt was made to keep the code simple and readable. Some study of
this code may be useful for readers more interested in implementation details. Again,
more efficient approaches are possible; this code was intended primarily to be used for
demonstration purposes.

As with the other demonstration algorithms, a single processor version of the FFT
application is first developed. This approach has several benefits. First, developing a
single processor version of any algorithm is typically much easier than building a
multiprocessor version. This allows the processes of algorithm design and
implementation to be seperated from the process of parallelization. It also creates a
'benchmark' for future compairisons,

Once the algorithm is working correctly, efforts to parallelize it can proceed. Experience
has shown that this process is a much simpler path than attempting to simultaneously
code and parallelize an algorithm. In particular, debugging is simplified, since the single
processor implementation can be tested for logical correctness, then the results of the
parallel version can be compared to the results generated by the single processor
version. Note that this single processor version of the FFT is identical to the
implementation discussed in the previous FFT document.

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 4

Figure 1 shows the building and execution of the single processor FFT application.
This is compiled and run on a standard workstation, in this case a Linux system. The
flag "-DSELFHOSTED" is passed to the compiler and is used to indicate that the single
processor is a full development system, in particular, one containing an operating
system and display capabilities. This permits the output to be printed to the console as
in Figure 1.

The source code to this single processor version is in Appendix E at the end of this
document. Note that this code contains only the main routines. The supporting FFT
routines as well as the 32-bit fixed point support is used extensively and can be found
in Appendicies A through D. Note that all of these routines are standard serial,

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 1: The self hosted FFT II application.

FFT Application II Page 5

uniprocessor function calls which can be typically found in any text or existing source
code for the FFT algorithm implementation.

The output in Figure 1 has five columns and 64 rows of numbers. The first column is
just the integers zero through 63. This is used to graph the X axis of the data. The
next two columns are the real and imaginary portions of the FFT data. Only the real
portion will be used in the graphing. Finally, the last two columns are the real and
imaginary values repeated in hexadecimal format. The format of these values is 16 bits
of integral and sixteen bits of fractional data.

Also included in the source code for the FFT filter are files to graphically plot the output
from this execution. If the results of the fft1.exe file are piped to a file named fft.dat, the

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 2: The self-hosted FFT filter input and output.

FFT Application II Page 6

gnuplot plotting application may be used to graph the output of the FFT to verify that the
functionality is correct. These files are supplied in the FFT demonstration directory,
including a saved bitmap of the plot.

Figure 2 shows the plot generated with the command:

$ gnuplot -persist fft.p

This plot shows that the input data is a sine wave going through four cycles with a peak
of 100. The FFT filtered output data is a single impulse of height 100 at the value of
four on the X axis, as expected.

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 3: Loading fft1.elf into node (0,0).

FFT Application II Page 7

Once the FFT filter code for a single processor has been successfully developed in a
self-hosted uniprocessor environment, the code may be moved to the Cmpware CMP-
DK development environment. The first step will be to verify that the uniprocessor code
still operates correctly on the uniprocessor model in the Cmpware CMP-DK. Once this
is verified, parallelizing the code into a multiprocessor implementation can begin.

Rather than compiling the code with the standard GCC compiler on the self hosted
system, a cross-targeted compiler running on the host system, but generating code for
the MIPS32 processor is used. Additionally, since this embedded MIPS32 processor
does not have dedicated operating system or IO support, the -DSELFHOSTED flag is
not used. This produces code which sends the FFT results to a pre-specified memory
location. The compiled code for a MIPS32 processor is supplied in the FFT directory

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 4: fft1.elf loaded into node (0,0).

FFT Application II Page 8

as fft1.elf.

Running the Single Processor FFT Application

To execute this uniprocessor FFT code, the Cmpware perspective in Eclipse must first
be opened. This is typically done from the Eclipse main menu using the Window -->
Open Perspective --> Cmpware menu command. If you have problems getting this
view to come up, or have not installed the Cmpware CMP-DK, see the installation guide
available on the Cmpware web site. It will guide you in installing the software.

The Cmpware CMP-DK used in this example is the demonstration version of the

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 5: The single processor fft1.elf executing on node (0,0).

FFT Application II Page 9

software and begins with the default 3 x 3 array of processors. The first row contains
three MIPS32 processors, the second row three Sparc-8 processors, and the third row
contains another three MIPS32 processors.

Like the previous examples, executable code is loaded into the first processor in the
upper left corner of the array. To load this processor with executable code, select the
processor with the mouse. It should be highlighted with a grey background and the
Status window at the bottom should indicate that the processor MIPS32(0,0) is
selected.

Use the Load button () to bring up a file selection dialog. Using this file selection
dialog, select the fft1.elf file from the list of files for the FFT demonstration as shown in

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 6: The Cmpware CMP-DK Preferences page.

FFT Application II Page 10

Figure 3. A message in the Status window at the bottom of the IDE should indicate
that the file was successfully loaded into the MISP32 processor at location (0,0) as in
Figure 4.

At this point, the executable file fft1.elf is loaded into the processor in the upper left
corner of the processor array. Clicking on the Step button () advances the global
clock in the simulation and updates the displays in the Cmpware CMP-DK. In the view
in Figure 5, the multiprocessor has been stepped through 24 cycles, as indicated by the
Status window.

For larger applications such as the FFT filter, the single stepping with the Step button
() one cycle at a time quickly becomes tedious. The Cmpware CMP-DK is designed

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 7: The single processor FFT results in local memory.

FFT Application II Page 11

to permit a configurable step size for the simulation. This allows larger sections of code
to be executed with a single step.

Like most parameters in the Cmpware CMP-DK the step size is set in the Cmpware
Preferences Page. This is set from the menu items Windows --> Preferences. This
brings up the Preference dialog box in Figure 6. Selecting Cmpware from the list on
left brings up the preferences for the Cmpware CMP-DK. In this case, the step size is
set to 1000. Pressing the [Ok] button will accept this value.

Now when the Step button () is pressed, the simulation steps 1000 cycles and the
display updates. This coarser display granularity permits simulation to proceed at a
faster pace. Note that the simulation may be suspended and the displays updated
before 1000 cycles if a breakpoint, illegal opcode or other system error occurs. Also
note that this parameter is also used by the Run button (). Steps of 1000 are used
between display updates. This sets the 'speed' of the 'animated' display.

At this point it is useful to switch to the main Memory display and scroll down to
address 0x00003000 as in Figure 7. This is the address in the source code where the
results will be placed. Stepping the simulation, a block of data identical to those printed
in the self hosted version can be seen being written to the memory. Note that this was
the primary reason for printing the hexadecimal values in the self-hosted version. it
makes it easier to compare to results to the ones displayed in the Memory view.

While the execution can be single stepped until new values appear in the memory
display, a breakpoint could be set in the Source Code window. This is done by clicking
on the vertical bar to the left of the source code text. A small round blue icon ()
should appear along with a message in the Status Window indicating that the
breakpoint was set.

Using the Run button (), the simulation should execute until the breakpoint is
reached. The breakpoint may be removed by clicking on the breakpoint icon to the left
of the source code. A message in the Status Window should indicate that the
breakpoint was removed.

Inspecting the results at address 0x00003000 in the Memory display window, it is clear
that the FFT filter is indeed functioning correctly on the MIPS32 model and generating
the correct results.

Parallelizing the FFT Application

The Cmpware CMP-DK supports a wide variety of inter-processor communication

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 12

mechanisms. The default network configuration for the demonstration software is a 2D
torus, which is just a 2D nearest-neighbor grid with the ends folded around on itself.
This folding makes the topology a 'doughnut', but mostly just serves to keep the
network from having any dangling ends.

The nearest neighbor torus communication consists of a shared block of memory and
bi-directional Shared Register communication channels. These Shared Registers are
32 bit data registers memory mapped at some address in the memory space. They are
also fully synchronized, meaning that no data will be written to a Shared Register until
any previously written data is read out. And no data will be read until data has been
made available by a write. If reads or writes cannot be performed, the processor stalls.
This can be thought of as a one word FIFO. Such communication channels may also

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 8: The FFT running on two nodes.

FFT Application II Page 13

be found in theoretical models such as Communicating Sequential Processes (CSP).
These types of channels have the useful feature that they are easy to debug and
analyze.

While the previous FFT example made use of shared memory to send data from one
processor to another, this implementation uses the Shared Register links. The links
provide built-in synchronization when sharing data between processors, where shared
memory does not. Using links permits the implicit synchronization of the processors
that simplify not only the coding but the debug. While it is expected that there will be
some additional overhead because of this approach, the benchmarks are given later in
this document.

The software definitions in the CmpwareTorus.h include file describe these
communication resources and the memory map in the simulation models associated
with this network. Appendix H contains the source code for this default inter-processor
communication network configuration. Primarily of interest in this application are the
east and west Shared Registers.

As in the other examples, these registers exist in the processor memory map and they
can be accessed in high level languages as a simple address pointer. No new
language constructs or libraries are required. The source code in Appendicies
demonstrate how communication across processors is performed by a simple
assignment to or from address pointers.

Because of this pointer access to the communication channels, it becomes fairly simple
to parallelize this code from the fft1.c serial version. The regular serial functions in fft.c
and fixed32.c do not need to be modified at all. These will be executed in parallel
across two or more nodes to calculate the final result in parallel. All that is required is
that intermediate results, rather than being sent to a local variable, get sent to the next
processor for the next stage of processing.

The main loop in the fftN.c source code in Appendix G is very similar to the single
processor code. All that has changed is that partial result inputs now come from a
pointer to a Shared Register and are sent to another pointer to a Shared Register. In
addition, some temporary storage is used for these values. There are some other
features of this code, but these will be discussed after the demonstration of the code
executing.

As shown in Figure 8, executable code must be loaded into the three MIPS32
processors in the top row. Again this is done using the Load button () to bring up a
file selection dialog. The executable ELF files are then selected and loaded. In this
application, the first processor at (0,0) is loaded with fft0.elf. The next two processors,
(0,1) and (0.2) are loaded with the fftN.elf executable file. It is very important that each

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 14

of these files is loaded into the correct processor with no other operations performed in
the interim.

Unlike the uniprocessor versions of this software, the synchronous communication of
the FFT application will permit the processors to begin execution when data is
available, and stop execution, or at least stall, when no further data is available. The
only involvement of processor (0,0) in the calculation is to send data to the next two
processors. These two processors split up the task of performing the FFT calculation.

Execution may be controlled either manually with the Step button () or as an
animation with the Run button (). The end of execution will be obvious from the main

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 9: The two node FFT implementation results.

FFT Application II Page 15

CMP Array window. When all of the top row of processors are 'greyed' and no longer
progressing in execution, the calculation is complete. If the Run button () was used,
the Stop button () should be used to halt execution at this point.

Figure 9 shows the Memory view in processor (0,2) after execution has completed.
This is exactly the results from the single processor code, as expected. This can be
compared to the results in either the self hosted or the single processor version of the
FFT.

Figure 10 shows an six processor version of the FFT algorithm. This is not available
with the demonstration version of the Cmpware CMP-DK and can only be executed on
a licensed version of the software. A glance at the Power Meter view indicates that

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 10: The six node FFT executing.

FFT Application II Page 16

even at six processors, the utilization remains as high as 98% and a large amount of
processing in parallel occurs. And as with the two node version, longer runs will
increase these numbers for all processors into the mid-90% range.

What is perhaps more interesting is that fairly low level parallelism is easily extracted
and put to use in a single chip multiprocessor using existing tools and simple software
techniques. In this example, a 64 point FFT is computed. The number of stages is
determined by this value. The number of 'stages' of the FFT algorithm is the base two
logarithm of the number of points in the FFT. I this case, the number of stages is six.
Larger FFTs can use more processors, but only growing logarithmically with this
approach. Additionally, it may be possible to exploit more parallelism within a stage.
This is left as an exercise for the reader.

And as with the previous examples, it is also possible to calculate more than one stage
per processor. So in this example, from one to six processors can be effectively
employed. It is also interesting to point out that this allocation happens completely at
run time and that no changes to the original fftN.c code have to be made. All that is
required is that the parameter giving the number of processors in fft0.c be changed to
the appropriate value.

Shared Memory Versus Shared Registers in the FFT Application

As discussed in the previous FFT example, using shared memory in a multiprocessor
requires special care. Data cannot simply be written to and read from shared memory
at will. There must be some form of 'handshaking' or synchronization between
processors when data is transferred. With Shared Registers, however, only one word is
transferred at a time and synchronizatin is built in to the Shared Register hardware.

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 11: FFT data transfer using shared memory.

/* The FFT main loop */
for (stage=firstStage; stage<=lastStage; stage++) {
 /* On the first stage shuffle in from shared memory */
 /* else shuffle from local temp to local temp */
 if (stage == firstStage) {
 wait = *in; // Wait for data in shared memory
 shuffle(inmem, t2, fftSize);
 *in = 1; // Finished with shared memory
 } else
 shuffle(t1, t2, fftSize);

FFT Application II Page 17

While this eliminates the extra synchronization code using the Shared Register ports in
the shared memory implementation, some additional work must be done to copy data
from the Shared Register links to local memory where it can be used by the application.

Figure 11 shows the code used by the shared memory FFT implementation. Note that
the first stage is treated specially, in that data is shuffled in from the inmem shared
memory, while the other stages use data in local memory t1. Also note the use of the
in port to synchronize access to the inmem shared memory.

Similarly, Figure 12 shows the Shared Register implementation. Note that there in a
one-time call to copyIn() to copy data from the Shared Register in to the local
storage t1. After this, the shuffle() operates on the local data in both t1 and t2.
Also note that the synchronization is built in to the Shared Registers and explicit calls to
the Shared Register ports bracketing the shared memory access are no longer
required. Similar changes occur in the final stage of the computation where the result is
passed on to the next processor.

While the code is somewhat simplified, it is expected that the extra copying of data may
result in some performance penalty. Figure 13 shows a graph of both the shared
memory and the Shared Register implementations of the FFT and their speedups as
compared to the single processor case. Indeed, the shared memory implementation is
somewhat faster than the Shared Register implementation, but only by a small factor.
In fact, the difference in this application tends to be less than 10%. While this is
significant, the performance gains must be weighed against other system parameters
including reliability and development time. Also, shared memory will tend to be a more
expensive hardware resource to implement.

In the case of the FFT, the difference between the Shared Register and shared
memory implementations does not necessarily offer a clear choice. This may not be

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 12: FFT data transfer using Shared Registers.

/* Get the data from the port */
copyIn(in, t1, fftSize);
/* The FFT main loop */
for (stage=firstStage; stage<=lastStage; stage++) {
 shuffle(t1, t2, fftSize);
...

FFT Application II Page 18

the case, however with other algorithms. Some algorithms which are communication
intensive may favor shared memory over Shared Registers. However, this is likely to
be highly implementation dependent. The granularity and patterns of the
communications between processors will determine the difference in performance in
different communication styles.

Conclusions

The Cmpware CMP-DK is a rich display environment combining fast simulation and
flexible multiprocessor modeling. This makes it an ideal environment for architecture
modeling and software development for these systems.

While the execution and display features of the Cmpware CMP-DK are notable, much
of the power of the system lies in its ability to quickly and flexibly construct processor,
network, link and multiprocessor models. This modeling capability is a large part of the

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 13: FFT speedup for shared memory versus Shared
Register communication.

1 2 3 4 5 6
0

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

FFT Speedup

Shared Memory
Shared Registers

Processors

S
pe

ed
up

FFT Application II Page 19

commercial version of the Cmpware CMP-DK.

For more information on the commercial version of the Cmpware CMP-DK see our web
site at:

http://www.cmpware.com/

or send an email to:

info@cmpware.com

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 20

Appendix A: fft.h Source Code

#ifndef _FFT_H_
#define _FFT_H_
/*
** This defines the code used to implement both the uniprocessor
** and multiprocessor Fast Fourier Transform (FFT). Note that
** all code in this unit is serial.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#include "fixed32.h"

/* A complex number */
typedef struct {fixed32 re; fixed32 im;} complex;

/*
** This function performs the FFT 'butterfly' kernel. It takes
** in a 'twiddle factor' w and two complex inputs a and b and
** produces two complex results, c and d.
*/

void fft(complex w, complex a, complex b, complex *c, complex *d);

/*
** This method gets the 'twiddle' factor W. This currently
** assumes that the size of the SINE and COSINE tables are the
** same size as the FFT, otherwise a scale factor for the
** index should be used. This also masks off the last
** <stage> bits to get the W index. This works well with
** the algorithm organized as stages of shuffled outputs.
** Note that 0 <= i < (FFT_SIZE/2).
*/

void getW(complex *w, int i, int stage);

/*
** This functions performs a perfect shuffle of the
** array of complex numbers in in[] putting the result
** in out[]. These arrays should be disjoint. The
** result of this function is undefined if out[] and
** in[] overlap.
*/

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 21

void shuffle(complex in[], complex out[], int size);

/*
** This functions re-orders an array in bit-reverse
** order, as required by the final processing of the
** FFT. These arrays should be disjoint. The
** result of this function is undefined if out[] and
** in[] overlap.
*/

void bitRev(complex in[], complex out[], int size, int bits);

/*
** This function reverses the least significant <size> bits
** in an integer a.
*/

int reverseBits(int a, int size);

/*
** This function just copies one array to another. This
** is used primarily for debug.
*/

void copy(complex in[], complex out[], int size);

#endif /* _FFT_H_ */

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 22

Appendix B: fft.c Source Code

/*
** See fft.h for comments.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#include "fft.h"

/* The number of entries in the sin(x) and cos(x) table */
#define TABLE_ENTRIES 64
/* The sin(x) table (see end of file) */
extern fixed32 SINE[TABLE_ENTRIES];
/* The cos(x) table (see end of file) */
extern fixed32 COSINE[TABLE_ENTRIES];

void fft(complex w, complex a, complex b, complex *c, complex *d) {
 c->re = a.re + b.re;
 c->im = a.im + b.im;
 d->re = mult(w.re, (a.re - b.re)) - mult(w.im, (a.im - b.im));
 d->im = mult(w.re, (a.im - b.im)) + mult(w.im, (a.re - b.re));
 } /* end fft() */

void getW(complex *w, int i, int stage) {
 w->re = COSINE[((i >> stage) << stage)];
 w->im = SINE[((i >> stage) << stage)];
 } /* end getW() */

void shuffle(complex in[], complex out[], int size) {
 int i;
 int i1 = 0;
 int i2 = size / 2;

 for (i=0; i<size; i++)
 if ((i & 0x01) == 0) {
 out[i].re = in[i1].re;
 out[i].im = in[i1++].im;
 } else {

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 23

 out[i].re = in[i2].re;
 out[i].im = in[i2++].im;
 }
 } /* end shuffle() */

void bitRev(complex in[], complex out[], int size, int bits) {
 int i;
 int rev_i;

 for (i=0; i<size; i++) {
 rev_i = reverseBits(i, bits);
 out[rev_i].re = in[i].re;
 out[rev_i].im = in[i].im;
 }
 } /* end bitRev() */

int reverseBits(int a, int size) {
 int i;
 int bit;
 int result = 0;
 for (i=0; i<size; i++) {
 bit = (a >> i) & 0x01;
 result = (result << 1) | bit;
 }
 //printf("Bit reversal: 0x%x 0x%x\n", a, result);

 return (result);
 } /* end reverseBits() */

void copy(complex in[], complex out[], int size) {
 int i;
 for (i=0; i<size; i++) {
 out[i].re = in[i].re;
 out[i].im = in[i].im;
 }

 } /* end copy() */

/* A table of sin(x) from 0 to 2*PI or sin(2*PI*n/N) */
fixed32 SINE[TABLE_ENTRIES] = {
0, 6423, 12785, 19023, 25079, 30892, 36409, 41574,
46340, 50659, 54490, 57796, 60546, 62713, 64275, 65219,

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 24

65535, 65219, 64275, 62713, 60546, 57796, 54490, 50659,
46340, 41574, 36409, 30892, 25079, 19023, 12785, 6423,
0, -6423, -12785, -19023, -25079, -30892, -36409, -41574,
-46340, -50659, -54490, -57796, -60546, -62713, -64275, -65219,
-65535, -65219, -64275, -62713, -60546, -57796, -54490, -50659,
-46340, -41574, -36409, -30892, -25079, -19023, -12785, -6423,
};

/* A table of sin(x) from 0 to 2*PI or sin(2*PI*n/N) */
fixed32 COSINE[TABLE_ENTRIES] = {
65535, 65219, 64275, 62713, 60546, 57796, 54490, 50659,
46340, 41574, 36409, 30892, 25079, 19023, 12785, 6423,
0, -6423, -12785, -19023, -25079, -30892, -36409, -41574,
-46340, -50659, -54490, -57796, -60546, -62713, -64275, -65219,
-65535, -65219, -64275, -62713, -60546, -57796, -54490, -50659,
-46340, -41574, -36409, -30892, -25079, -19023, -12785, -6423,
0, 6423, 12785, 19023, 25079, 30892, 36409, 41574,
46340, 50659, 54490, 57796, 60546, 62713, 64275, 65219,
};

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 25

Appendix C: fixed32.h Source Code

#ifndef _FIXED32_H_
#define _FIXED32_H_
/*
** This defines a 32-bit fixed point implementation with 16 bits
** of integral and 16 bits of fractional value.
**
** Copyright (c) 2005 Cmpware, Inc. All rights reserved.
**
*/

/* A 32 bit fixed point number with 16 bit integer, 16 bit fractional parts */
typedef int fixed32;

/*
** This multiplies tow fixed32 numbers and returns a
** fixed32.
*/
fixed32 mult(fixed32 a, fixed32 b);

/*
** This converts a fixed32 value to an interger. The factional
** portion is truncated.
*/

int fixed32ToInt(fixed32 f);

/*
** This converts an integer to a fixed32.
*/

fixed32 intToFixed32(int i);

/*
** This converts a fixed32 to a double precision float.
*/

double fixed32ToDouble(fixed32 f);

/*
** This converts a floating point double to a fixed32.

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 26

*/

fixed32 doubleToFixed32(double d);

#endif /* _FIXED32_H_*/

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 27

Appendix D: fixed32.c Source Code

/*
** This defines a 32-bit fixed point implementation with 16 bits
** of integral and 16 bits of fractional value.
**
** Copyright (c) 2005 Cmpware, Inc. All rights reserved.
**
*/

#include "fixed32.h"

fixed32 mult(fixed32 a, fixed32 b) {
 return ((a >> 8) * (b >> 8));
 } /* end mult() */

int fixed32ToInt(fixed32 f) {
 return (f >> 16);
 } /* end fixed32ToInt() */

fixed32 intToFixed32(int i) {
 return (i << 16);
 } /* end intToFixed32() */

double fixed32ToDouble(fixed32 f) {
 return (((double) f) / (double) ((1 << 16)-1));
 } /* end fixed32ToDouble() */

fixed32 doubleToFixed32(double d) {
 return ((fixed32) (d * ((double) ((1 << 16)-1))));
 } /* end doubleToFixed32() */

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 28

Appendix E: fft1.c Source Code

/*
** This program is used to implement the Fast Fourier
** Transform (FFT) using integer / fixed point arithmetic
** on a single node or on a self-hosted system. This is
** used to be sure the algorithm is solid and is used
** in a later parallelized version.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/
/* Define SELFHOSTED to run on standard host */
/* undefine to run on simuator / hardware */
/* (Or use the -DSELFHOSTED flag to gcc) */
//#define SELFHOSTED

#include "fft.h"

/* The size of the FFT */
#define SIZE 64
/* The number of FFT stages (must be log2(SIZE))*/
#define STAGES 6

/* A place to put the result */
#ifdef SELFHOSTED
 static complex result[SIZE];
#else
 static complex *result = (complex *) 0x3000;
#endif

int main(int argc, char *argv[]) {
 int i;
 int stage;
 complex w;
 complex input[SIZE];
 complex in[SIZE];
 complex out[SIZE];
 /* Start with some test data in input[] */
 for (i=0; i<SIZE; i++) {
 input[i].re = 0;
 input[i].im = 0;
 }

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 29

 input[4].re = intToFixed32(100);

 /* Keep a copy of the input */
 copy(input, in, SIZE);

 /* The main loop */
 for (stage=0; stage<STAGES; stage++) {
 shuffle(in, out, SIZE);

 for (i=0; i<SIZE; i=i+2) {
 getW(&w, (i/2), stage);
 fft(w, out[i], out[i+1], &(in[i]), &(in[i+1]));
 } /* end for(i) */
 } /* end for(stage) */
 /* The final 'bit reversal' */
 bitRev(in, result, SIZE, STAGES);

#ifdef SELFHOSTED
 /* Print out the result (if we have a stdout) */
 /* (in decimal for plotting, and hex to compare */
 /* to the embeded / simulated results) */
 for (i=0; i<SIZE; i++)
 printf("%d %d %d 0x%08x 0x%08x\n", i,
 fixed32ToInt(input[i].re), fixed32ToInt(result[i].re),
 result[i].re, result[i].im);

#endif
 } /* end main() */

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 30

Appendix F: fft0.c Source Code

/*
** This program sends data to the FFT filter. It is a
** simple loop which also repeats for benchmarking.
**
** Copyright (c) 2004, 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#include "CmpwareTorus.h"
#include "fft.h"
/* The number of processors */
/* (Can also be set with the -DPROCESSORS=n flag in gcc) */
//#define PROCESSORS 2

/* The size of the FFT */
#define SIZE 64
/* The number of FFT stages (must be log2(SIZE))*/
#define STAGES 6

/* The number of time to send the data */
const int REPEAT = 100;

int main(int argc, char *argv[]) {
 int i;
 int j;
 int wait;
 Port out = east; // Set up the output port
 /* Send out parameters */
 *out = PROCESSORS; // Number of processors
 *out = 0; // The first processor number
 *out = SIZE; // FFT size
 *out = STAGES; // FFT Stages (log2(SIZE))
 /* Put data in shared memory */
 for (i=0; i<REPEAT; i++) {
 /* Put data in shared memory */
 for (j=0; j<SIZE; j++) {
 /* Real part of input (impulse at 4) */
 if (j == 4)
 *out = intToFixed32(100);
 else

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 31

 *out = 0;
 /* Imaginary part of input */
 *out = 0;
 } /* end for(j) */

 } /* end for(i) */

 /* Stall at the end */
 wait = *out;
 } /* end main() */

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 32

Appendix G: fftN.c Source Code

/*
** This program is used to implement the Fast Fourier
** Transform (FFT) using integer / fixed point arithmetic.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/
/* Define SELFHOSTED to run on standard host */
/* undefine to run on simuator / hardware */
//#define SELFHOSTED

#include "CmpwareTorus.h"
#include "fft.h"
#include "fixed32.h"
/* The largest possible FFT */
#define MAX_FFT 1024

/* A place to put the result */
static complex *result = (complex *) 0x3000;
/* Function prototypes */
int getStartStage(int thisProcessor, int processors, int stages);
void copyIn(Port in, complex out[], int size);
void copyOut(complex in[], Port out, int size);

int main(int argc, char *argv[]) {
 int i = 0;
 int processors;
 int thisProcessor;
 int fftSize;
 int fftStages;
 int firstStage = 0; // The first stage of the FFT done on this node
 int lastStage = 5; // The last stage of the FFT done on this node
 int stage;
 complex t1[MAX_FFT];
 complex t2[MAX_FFT];
 complex w;
 Port out = east;
 Port in = west;

 /* Get the parameters */
 processors = *in; // The number of processors

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 33

 thisProcessor = *in; // This processor number
 fftSize = *in; // The size of the FFT
 fftStages = *in; // The number of FFT stages (log2(fftSize))
 /* If this is the last node, the output port is dev_null */
 if (thisProcessor >= (processors-1))
 out = dev_null;
 /* Send the parameters to the next node */
 *out = processors; // Number of processors
 *out = (thisProcessor+1); // Number of next processor
 *out = fftSize; // The size of the FFT
 *out = fftStages; // The number of FFT stages (log2(fftSize))
 /* Which stages are being done on this processor? */
 firstStage = getStartStage(thisProcessor, processors, fftStages);
 lastStage = getStartStage(thisProcessor+1, processors, fftStages) - 1;

 /* Loop as long as data is available */
 for (;;) {
 /* Get the data from the port */
 copyIn(in, t1, fftSize);
 /* The FFT main loop */
 for (stage=firstStage; stage<=lastStage; stage++) {
 shuffle(t1, t2, fftSize);

 for (i=0; i<fftSize; i=i+2) {
 getW(&w, (i/2), stage);
 fft(w, t2[i], t2[i+1], &(t1[i]), &(t1[i+1]));
 } /* end for(i) */
 } /* end for(stage) */
 /* The final 'bit reversal' in last stage */
 if (lastStage == (fftStages-1))
 bitRev(t1, result, fftSize, fftStages);
 else
 copyOut(t1, out, fftSize);
 i = 0; // place for a breakpoint

 } /* end for(;;) */

 } /* end main() */

/*
** This method is used to spread stages across processors
** evenly, even when the number of processors is not an

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 34

** even multiple of the number of stages. This method gives
** the number of the first stage to be executed on a processor.
**
** @param thisProcessor The processor number, starting
** at zero.
**
** @param processors The number of processors.
**
** @param rounds The number of stages.
**
** @return The number of first stage to be performed on
** this processor.
**
*/

int getStartStage(int thisProcessor, int processors, int stages) {
 return ((thisProcessor * stages) / processors);
 } /* end getStartStage() */

/**
** This method copies data in from a port and stores
** it in a local array.
*/

void copyIn(Port in, complex out[], int size) {
 int i;
 for (i=0; i<size; i++) {
 out[i].re = *in;
 out[i].im = *in;
 }

 } /* end copyIn() */

/**
** This method copies data out from a local array to a
** port.
*/

void copyOut(complex in[], Port out, int size) {
 int i;
 for (i=0; i<size; i++) {
 *out = in[i].re;
 *out = in[i].im;
 }

 } /* end copyOut() */

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 35

Appendix H: CmpwareTorus.h Source Code

/*
**
** This defines the shared memory and links in the 'Torus' topology.
** This must agree with the values in the memory map for the
** hardware and the simulation model.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#ifndef _CMPWARETORUS_H_
#define _CMPWARETORUS_H_

/* The Memory Mapped IO Ports */
typedef volatile int *Port;
/* A shared memory address */
typedef unsigned char *Address;

/* The size of the local memory */
#define LOCAL_MEMORY_SIZE (32 * 1024)
/* The size of the shared memory */
#define SHARED_MEMORY_SIZE (8 * 1024)

/* Memory Mapped IO ports */
#ifdef SELFHOSTED
 /* For self-hosted testing, just make a pointer to an int */
 Port north[1];
 Port east[1];
 Port south[1];
 Port west[1];
 Port dev_null[1];
#else
 /* Point to links in hardware memeory map */
 Port north = (Port) 0x80000000;
 Port east = (Port) 0x80000004;
 Port south = (Port) 0x80000008;
 Port west = (Port) 0x8000000c;
 Port dev_null = (Port) 0x80000010;
#endif /* SELFHOSTED */

/* Shared Memory */
#ifdef SELFHOSTED
 /* For self-hosted testing, just allocate arrays */
 #include <stdio.h>

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FFT Application II Page 36

 Address northSharedMemory[SHARED_MEMORY_SIZE];
 Address eastSharedMemory[SHARED_MEMORY_SIZE];
 Address southSharedMemory[SHARED_MEMORY_SIZE];
 Address westSharedMemory[SHARED_MEMORY_SIZE];
#else
 /* else define shared memory addresses corresponding to the hardware */
 Address northSharedMemory = (Address) LOCAL_MEMORY_SIZE;
 Address eastSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
SHARED_MEMORY_SIZE);
 Address southSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
(2*SHARED_MEMORY_SIZE));
 Address westSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
(3*SHARED_MEMORY_SIZE));
#endif /* SELFHOSTED */

#endif /* _CMPWARETORUS_H_ */

Version 2.0.0 (February 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

