
FIR Application Page 1

FIR: Demonstration Application
for the

Cmpware CMP-DK
(Demo Version 2.0 for Eclipse 3.0)

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is a
multiprocessor simulation and software development environment. It provides fast and
efficient modeling of multiprocessor architectures as well as support for software
development on such systems. The goal of supporting software development is
achieved by providing an interactive, display-rich environment that permits large
amounts of information to be displayed in a fast, simple and uncluttered format. Such
capabilities are essential in analyzing the behavior of multiprocessor systems.

This demonstration version of the Cmpware CMP-DK (version 2.0) for Eclipse 3.0 and
higher contains all features of the standard toolkit, but restricts the simulation model to
a 3 x 3 heterogeneous array of MIPS32 and SPARC-8 processors. All simulation
capabilities and displays are included. This includes:

Demonstration Applications

Avaliable for use with the Cmpware CMP-DK version 2.0 is a series of demonstration
applications which are presented to introduce some of the features in the CMP-DK.
These applications start with small, simple programs gradually building up to more
complex applications exploiting relatively low-level parallelism. These demonstrations
stand alone and can be studied in any order, but it is best to start with the early
examples, which are smaller and simpler and build up to the larger ones. This provides

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

 Source Code Tracing
 Source Code Variables
 Disassembly
 Memory Display
 Power Estimator

 General Purpose Registers
 Special Purpose Registers
 Command Line Interface
 Link Utilization

FIR Application Page 2

a tutorial-like introduction to the features in the Cmpware CMP-DK.

While these demonstrations cover the application development aspects of this tool,
much of the power in the Cmpware CMP-DK is in the ability to quickly model relatively
complex multiprocessor systems. This modeling activity is reserved for licensed copies
of the software. For more information on getting licensed copies of the Cmpware CMP-
DK, contact Cmpware at info@cmpware.com.

The groups of files in this tutorial package are as follows:

 Introduction - An introduction to all of the applications
 Simple - A simple, single processor test application
 Ping Pong - a simple two processor application
 Hetero - the Ping Pong application on two different types of processors
 FIR Filter - A multiprocessor Finite Impulse Response (FIR) Filter
 AES Encryption - A multiprocessor AES encryption implementation
 FFT Filter - a multiprocessor FFT filter using shared memory
 FFT Filter 2 - a multiprocessor FFT filter using communication channels

These example applications assume that the Cmpware CMP-DK has already been
successfully installed on your system. For more information on acquiring and installing
either the free demonstration version or the fully licensed version, see the Cmpware
web site.

The source and compiled code for these demonstration applications can be
downloaded from the Cmpware Web site as a compressed ZIP archive at:

http://www.cmpware.com/Apps/CmpwareApps_2_0.zip

The FIR Filter Application

The Finite Impulse Response (FIR) filter extends the ideas in the previous example
applications. In particular this offers a more 'real world' example of a popular Digital
Signal Processing (DSP) algorithm. Some further ideas in parallelizing applications,
including parameterization, will also be examined.

The FIR filter is a commonly used DSP filter typical in audio and other applications.
The FIR filter has a fairly simple structure that makes it highly parallelizable and
suitable for a hardware implementation. This structure also makes it fairly simple to
parallelize in a single chip multiprocessor.

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 3

The FIR code is all in the compressed ZIP archive under the FIR directory, and
contains source code, Makefile, linker directives file, compiled relocatable object files
and finally, fully linked executable ELF files. In fact, all of the demonstration
applications will contain these types of files. All have been built using the Gnu GCC
compiler with a version higher than 3.0. If you have access to a MIPS32 compiler
which produces standard ELF executable with DWARF2 debug information, you may
modify these files and re-compile them and test the results and use them in the
Cmpware CMP-DK.

Running the Self Hosted FIR Application

The previous demonstration applications were all very simple and produced no
particular result. They were mostly used as vehicle for demonstrating features in the
Cmpware CMP-DK. The FIR application, however, is more complex and will use real
input data to produce a real output.

In order to simplify the development process and to create a 'benchmark' for future
compairisons, a single processor version of the FIR filter is first developed. This
approach has several benefits. First, developing a single processor version of any
algorithm is typically much easier than building a multiprocessor version. This allows
the processes of algorithm design and implementation to be seperated from the
process of parallelization.

Once the algorithm is working correctly, efforts to parallelize it can proceed. Experience
has shown that this process is a much simpler path than attempting to simultaneously
code and parallelize an algorithm. In particular, debugging is simplified, since the single
processor implementation can be tested for logical correctness, then the results of the
parallel version can be compared to the results generated by the single processor
version.

Figure 1 shows the building and execution of the single processor FIR filter application.
This is compiled and run on a standard workstation, in this case a Linux system. The
flag "-DSELFHOSTED" is passed to the compiler and is used to indicate that the single
processor is a full development system, in particular, one containing an operating
system and display capabilities. This permits the output to be printed to the console as
in Figure 1. The source code to this single processor version is in Appendix A at the
end of this document. Note that the SELFHOSTED flag is used to control the output.
Specifically, in a self-hosted system, the output is sent to a local variable and printed to
the standard output.

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 4

Also included in the source code for the FIR filter are files to graphically plot the output
from this execution. If the results of the FIR1.exe file are piped to a file named fir.dat,
the gnuplot plotting application may be used to graph the output of the FIR filter to verify
that the functionality is correct. These files are supplied in the FIR demonstration
directory, including a saved bitmap of the plot.

Figure 2 shows the plot generated with the command:

$ gnuplot -persist fir.p

This plot shows that the input data is a triangle or sawtooth wave. The FIR filtered
output is a smoothed version of this data, as expected. Note that the final result is not

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 1: The self hosted FIR application.

FIR Application Page 5

scaled and that the FIR parameters are all '1'. This can be changed to experiment with
the filter implementation. These values are set in arrays at the beginning of the Fir1.c
source code file in Appendix A.

Once the FIR filter code for a single processor has been successfully developed in a
friendly self-hosted environment, the code may be moved to the Cmpware CMP-DK
development environment. The first step will be to verify that the uniprocessor code still
operated correctly on the uniprocessor model in the Cmpware CMP-DK. Once this is
verified, parallelizing the code into a multiprocessor implementation can begin.

Rather than compiling the code with the standard GCC compiler on the self hosted
system, a cross-targeted compiler running on the host system, but generating code for
the MIPS32 processor is used. Additionally, since this embedded MIPS32 processor
does not have dedicated operating system or IO support, the -DSELFHOSTED flag is
not used. This produces code which sends the FIR results to a pre-specified memory
location. The compiled code for a MIPS32 processor is supplied in the FIR directory
as Fir1.elf.

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 2: The self-hosted FIR filter input and output.

FIR Application Page 6

Running the Single Processor FIR Application

To execute this uniprocessor FIR code, the Cmpware perspective in Eclipse must first
be opened. This is typically done from the Eclipse main menu using the Window -->
Open Perspective --> Cmpware menu command. If you have problems getting this
view to come up, or have not installed the Cmpware CMP-DK, see the installation guide
available on the Cmpware web site. It will guide you in installing the software.

The Cmpware CMP-DK used in this example is the demonstration version of the
software and begins with the default 3 x 3 array of processors. The first row contains
three MIPS32 processors, the second row three Sparc-8 processors, and the third row

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 3: Loading Fir1.elf into node (0,0).

FIR Application Page 7

contains another three MIPS32 processors.

Like the previous examples, executable code is loaded into the first processor in the
upper left corner of the array. To load this processor with executable code, select the
processor with the mouse. It should be highlighted with a grey background and the
Status window at the bottom should indicate that the processor MIPS32(0,0) is
selected.

Use the Load button () to bring up a file selection dialog. Using this file selection
dialog, select the Fir1.elf file from the list of files for the FIR demonstration as shown in
Figure 3. A message in the Status window at the bottom of the IDE should indicate
that the file was successfully loaded into the MISP32 processor at location (0,0) as in

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 4: Fir1.elf loaded into node (0,0).

FIR Application Page 8

Figure 4.

At this point, the executable file FIR1.elf is loaded into the processor in the upper left
corner of the processor array. Clicking on the Step button () advances the global
clock in the simulation and updates the displays in the Cmpware CMP-DK. In the view
in Figure 5, the multiprocessor has been stepped through 8 cycles, as indicated by the
Status window.

For larger applications such as the FIR filter, the single stepping with the Step button (
) one cycle at a time quickly becomes tedious. The Cmpware CMP-DK is designed

to permit a configurable step size for the simulation. This permits larger sections of
code to be executed with a single step.

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 5: Fir1.elf executing on node (0,0).

FIR Application Page 9

Like most parameters in the Cmpware CMP-DK the step size is set in the Cmpware
Preferences Page. This is set from the menu items Windows --> Preferences. This
brings up the Preference dialog box in Figure 6. Selecting Cmpware from the list on
left brings up the preferences for the Cmpware CMP-DK. In this case, the step size is
set to 1000. Pressing the [Ok] button will accept this value.

Now when the Step button () is pressed, the simulation steps 1000 cycles and the
display updates. This coarser display granularity permits simulation to proceed at a
faster pace. Note that the simulation may be suspended and the displays updated
before 1000 cycles if a breakpoint, illegal opcode or other system error occurs. Also
note that this parameter is also used by the Run button (). Steps of 1000 are used

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 6: The Cmpware CMP-DK Preferences page.

FIR Application Page 10

between display updates. This sets the 'speed' of the 'animated' display.

At this point it is useful to switch to the main Memory display and scroll down to
address 00003000 as in Figure 7. This is the address in the source code where the
results will be placed. Stepping the simulation, four byte integer values identical to
those plotted from the self hosted version can be seen being written to the memory.

At this point, the execution can be single stepped until new values fail to appear in the
memory display. More practically, a breakpoint should be set in the Source Code
window. This is done by clicking on the vertical bar to the left of the source code text.
A small round blue icon () should appear along with a message in the Status
Window indicating that the breakpoint was set.

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 7: The FIR results in local memory.

FIR Application Page 11

Using the Run button (), the simulation should execute until the breakpoint is
reached. The breakpoint may be removed by clicking on the breakpoint icon to the left
of the source code. A message in the Status Window should indicate that the
breakpoint was removed.

Inspecting the results at address 00003000 in the Memory display window, it is clear
that the FIR filter is indeed functioning correctly on the MIPS32 model and generating
the correct results.

Parallelizing the FIR Application

The Cmpware CMP-DK supports a wide variety of inter-processor communication
mechanisms. The default network configuration for the demonstration software is a 2D
torus, which is just a 2D nearest-neighbor grid with the ends folded around on itself.
This folding makes the topology a 'doughnut', but mostly just serves to keep the
network from having any dangling ends.

The nearest neighbor torus communication consists of a shared block of memory and
bi-directional Shared Register communication channels. These Shared Registers are
32 bit data registers memory mapped at some address in the memory space. They are
also fully synchronized, meaning that no data will be written to a Shared Register until
any previously written data is read out. And no data will be read until data has been
made available by a write. If reads or writes cannot be performed, the processor stalls.
This can be thought of as a one word FIFO. Such communication channels may also
be found in theoretical models such as Communicating Sequential Processes (CSP).
These types of channels have the useful feature that they are easy to debug and
analyze.

The software definitions in the CmpwareTorus.h include file describe these
communication resources and the memory map in the simulation models associated
with this network. Appendix E contains the source code for this default inter-processor
communication network configuration. Primarily of interest in this application are the
east and west Shared Registers.

Also note that because these registers exist in the processor memory map, they can be
accessed in high level languages as a simple address pointer. No new language
constructs or libraries are required. The source code in Appendix C and Appendix D
demonstrate how communication across processors is performed by a simple
assignment to or from an address pointer.

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 12

Because of this pointer access to the communication channels, it becomes fairly simple
to parallelize this code. The regular serial functions in Fir.c do not need to be modified
at all. These will be executed in parallel across two or more nodes to calculate the final
result in parallel. All that is required is that intermediate results, rather than being sent
to a local variable, get sent to the next processor for the next stage of processing.

The main loop in the FirN.c source code in Appendix D is very similar to the single
processor code. All that has changed is that partial result inputs now come from a
pointer (communication channel) and are sent to another pointer (communication
channel). There are some other features of this code, but these will be discussed after
the demonstration execution.

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 8: The two node FIR filter completes execution.

FIR Application Page 13

As shown in Figure 8, executable code must be loaded into the three MIPS32
processors in the top row. Again this is done using the Load button () to bring up a
file selection dialog. The executable ELF files are then selected and loaded. In this
application, the first processor at (0,0) is loaded with Fir0.elf. The next two processors,
(0,1) and (0.2) are loaded with the FirN.elf executable file. It is very important that each
of these files is loaded into the correct processor with no other operations performed in
the interim.

Unlike the uniprocessor versions of this software, the synchronous communication of
the FIR application will permit the processors to begin execution when data is available,
and stop execution, or at least stall, when no further data is available. The only

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 9: The two node FIR filer results.

FIR Application Page 14

involvement of processor (0,0) in the calculation is to send data to the next two
processors. These two processors split up the task of performing the FIR calculation.
Execution may be controlled either manually with the Step button () or as an
animation with the Run button (). The end of execution will be obvious from the main
CMP Array window. When all of the top row of processors are 'greyed' and no longer
progressing in execution, the calculation is complete. If the Run button () was used,
the Stop button () should be used to halt execution at this point.

Figure 9 shows the Memory view in processor (0,2) after execution has completed.
This is exactly the results from the single processor code, as expected. Also of interest
is the Power Meter view. It indicates that the FIR filter executed nearly twice as fast on
two processors as on one. Figure 8 shows that the two processing nodes remained

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 10: The eight node FIR filter completes execution.

FIR Application Page 15

busy 93% of the time. The first processor at (0,0) is busy only 7% of the time because
it is simply sending test data to the first processing node, and doing no processing itself.

Figure 10 shows an eight processor version of the FIR filter. This is not available with
the demonstration version of the Cmpware CMP-DK and can only be executed on a
licensed version of the software. A glance at the Power Meter view indicates that even
at eight processors, the utilization remains high at 98% and a large amount of
processing in parallel occurs. What is perhaps more interesting is that fairly low level
parallelism is easily extracted and put to use in a single chip multiprocessor using
existing tools and simple software techniques.

Parameterization of the FIR Application

The code used to perform the basic cmputation in the FIR filter is exactly the same in
the uniprocessor and multiprocessor implementations. This code can be found in the
Fir.c file and in Appendix B at the end of this document. This code is basic, serial
version of the functions FIR() and shift() as they may be found in a textbook. In
the uniprocessor version of the code, Fir1.c, these two functions are used inside of the
main loop to perform the FIR function. Similarly, these same functions are used inside
of the main loop of the multiprocessor FIR code in the FirN.c source code file.
However, the multiprocessor code in FirN.c contains some additional functionality.

Figure 11 shows three 'parameters' being read in to the processor from the input port
*in and then being modified and sent to the output port *out. What this does is
establish three global parameters used to describe the FIR filter. The first parameter,

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 11: The parameterization code.

 /* Get the parameters */
 processors = *in; // The number of processing nodes
 thisProcessor = *in; // This processor number
 ntaps = *in; // The number of taps per processor
 /* If this is the last node, the output port is dev_null */
 if (thisProcessor >= (processors-1))
 out = dev_null;
 /* Send the parameters to the next node */
 *out = processors; // Number of processors
 *out = (thisProcessor+1); // Number of next processor
 *out = ntaps; // Number of taps per node

FIR Application Page 16

processors, is the number of processors in the calculation. the second is
thisProcessor, or the current processor number. The last parameter is ntaps, the
number of taps per processor used in the filter. These parameters are read in and sent
to the next node, with the thisProcessor parameter being incremented.

In this case, the number of taps per node is fixed, and there is little real use for the
processors and thisProcessor parameters, although they are useful for debug. It
is also possible to further increase the flexibility by making the number of taps
dependent on the number of processors. This could dynamically vary the number of
taps calculated per processor.

This approach is useful for the same reason parameters to function calls are: they
permit one piece of code to be compiled and run for a variety of conditions. The
FirN.elf executable from the FirN.c source code file can be used to build an FIR filter of
any size, given the current requirement of exactly two taps per processor. This not only
help reuse multiprocessor code, but also helps to simplify the loading, debug and
management of the multiprocessor software. Judicious use of multiprocessor
parameters, much like judicious use of uniprocessor parameters in function calls, will
help define the efficiency and flexibility of the code.

Finally, there is a single line of code between the parameters being read and written.
This checks to see if the current processor is indeed the last processor in the
multiprocessor operation. If it is, it should not be sending parameters or results to the
next node (because there is no next node!). To attempt to do so will simply stall the
system and execution will not proceed.

One way to solve this problem is with 'if' statements in places where data is output. But
this can quickly become cumbersome. The approach used here is to reassign the out
port from its default of east to dev_null. The dev_null port is a default input and
output port in each processor node that is unsynchronized and can be read and written
at any time and will never stall the calculation. This is somewhat similar to the
"/dev/null" device in Unix file systems which permits data to be sent to a device which is
always guaranteed to exist, and never to fail.

This also points out how the use of a small piece of hardware in a multiprocessor
system can greatly simplify the software. Without the dev_null port, the code would
be filled with complex in-then structures to take into account the final node in the
sequence. Also note that it is more likely that this filter will be used in some application
that will take the output data and perform some further functions on it. In this case, the
dev_null port is really only used for software development and not in the final
deployment of the FIR filter.

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 17

Conclusions

The Cmpware CMP-DK is a rich display environment combining fast simulation and
flexible multiprocessor modeling. This makes it an ideal environment for architecture
modeling and software development for these systems.

While the execution and display features of the Cmpware CMP-DK are notable, much
of the power of the system lies in its ability to quickly and flexibly construct processor,
network, link and multiprocessor models. This modeling capability is a large part of the
commercial version of the Cmpware CMP-DK.

For more information on the commercial version of the Cmpware CMP-DK see our web
site at:

http://www.cmpware.com/

or send an email to:

info@cmpware.com

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 18

Appendix A: FIR1.c Source Code

/*
** This implements the single processor version of the
** FIR filter. It can be compiled to run either self-hosted
** (on a PC or workstation) or on a single embedded processor.
** It uses the same routines used in the multiprocessor FIR
** and is used primarily to test the algorithm.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#ifndef uint32
#define uint32 unsigned long int
#endif
/* Define SELFHOSTED to run on standard host */
/* undefine to run on simuator / hardware */
/* (Or use the -DSELFHOSTED flag to gcc) */
//#define SELFHOSTED

/* The number of data inputs */
#define INPUTS 32
/* The function prototypes */
int FIR(int ntaps, int inSum);
int shift(int ntaps, int inSum);
/* A place to put the result */
#ifdef SELFHOSTED
 static uint32 result[INPUTS];
#else
 static uint32 *result = (uint32 *) 0x3000;
#endif
/* Number of filter taps */
const int ntaps = 8;
/* A simple sawtooth input */
static int input[INPUTS] =
 {0, 1, 2, 3, 4, 5, 6, 7,
 7, 6, 5, 4, 3, 2, 1, 0,
 0, 1, 2, 3, 4, 5, 6, 7,
 7, 6, 5, 4, 3, 2, 1, 0};

int main(int argc, char *argv[]) {
 int i;

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 19

 int j = 0;
 int k = 0;
 int zOut;
 for (i=0;i<INPUTS;i++) {

 /* Perform FIR */
 result[j++] = FIR(ntaps, 0);

 /* Shift the delay line */
 zOut = shift(ntaps, input[k++]);

 } /* end for() */

#ifdef SELFHOSTED
 /* Print out the result (if we have a stdout) */
 /* (in decimal for plotting, and hex to compare */
 /* to the embeded / simulated results) */
 for(i=0; i<INPUTS; i++)
 printf("%d %d %d # 0x%08x 0x%08x\n", i,
 input[i], result[i], input[i], result[i]);

#endif
 } /* end main() */

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 20

Appendix B: FIR.c Source Code

/*
**
** This implements the routines used in the FIR filter. Note that
** These routines are all completely serial.
**
** Copyright (c) 2004, 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

/* The filter coefficients */
static int h[] =
 {1, 1, 1, 1,
 1, 1, 1, 1};
/* The delay line */
static int z[] =
 {0, 0, 0, 0,
 0, 0, 0, 0};

/*
** This method computes the FIR.
**
** @param ntaps The number of taps in the
** FIR filter.
**
** @param sum The partial sum into the FIR.
**
** @return This method returns the FIR result.
**
*/

int FIR(int ntaps, int sum) {
 int i;

 for (i=0; i<ntaps; i++)
 sum += h[i] * z[i];

 return (sum);
 } /* end FIR() */

/*
** This method shifts the delay line z[].
**
** @param ntaps The number of elements in

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 21

** the delay line z[].
**
** @param zIn The shifted in value
**
** @return This method returns the value shifted
** out fo the delay line z[].
**
*/

int shift(int ntaps, int zIn) {
 int i;
 int zOut;
 /* Save the last value (being shifted out) */
 zOut = z[ntaps-1];
 /* Shift the delay line */
 for (i=ntaps-2; i>=0; i--)
 z[i+1] = z[i];
 /* Add in the new shifted in value */
 z[0] = zIn;

 return (zOut);
 } /* end shift() */

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 22

Appendix C: FIR0.c Source Code

/*
** This program sends data to the FIR filter. It is a
** simple loop which also repeats for benchmarking.
**
** Copyright (c) 2004, 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#include "CmpwareTorus.h"

/* The number of processors */
/* (Can also be set with the -DPROCESSORS=n flag in gcc) */
//#define PROCESSORS 2

/* The number of processors */
/* (Can also be set with the -DTAPS_PER_NODE=n flag in gcc) */
//#define TAPS_PER_NODE 2

/* The number of data inputs */
#define INPUTS 32
/* The number of time to send the data */
const int REPEAT = 100;
/* The number of taps per processor */
//const int TAPS_PER_NODE = 4;

/* A simple sawtooth input */
static int input[INPUTS] =
 {0, 1, 2, 3, 4, 5, 6, 7,
 7, 6, 5, 4, 3, 2, 1, 0,
 0, 1, 2, 3, 4, 5, 6, 7,
 7, 6, 5, 4, 3, 2, 1, 0};

int main(int argc, char *argv[]) {
 int j;
 int i;
 int tmp;
 Port out = east; // Set up the output port
 /* Send out parameters */
 *out = PROCESSORS; // Number of processors
 *out = 0; // Node number
 *out = TAPS_PER_NODE; // Taps per node
 /* Send data out */

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 23

 for (i=0; i<REPEAT; i++)
 for (j=0; j<INPUTS; j++) {
 /* Partial sum */
 *out = 0;
 /* Next input */
 *out = input[j];
 }

 /* Stall at the end */
 tmp = *out;
 } /* end main() */

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 24

Appendix D: FIRN.c Source Code

/*
**
** This implements an FIR filter which may be run on one
** or more processors, depending on the input parameters.
**
** Copyright (c) 2004 Cmpware, Inc. All rights reserved.
**
*/

#include "CmpwareTorus.h"

/* The function prototypes */
int FIR(int ntaps, int inSum);
int shift(int ntaps, int inSum);

/* A place to put the result */
static int *result = (int *) 0x3000;

int main(int argc, char *argv[]) {
 int i = 0;
 int processors;
 int thisProcessor;
 int ntaps;
 int tmpOut;
 int zOut;
 Port out = east;
 Port in = west;

 /* Get the parameters */
 processors = *in; // The number of processing nodes
 thisProcessor = *in; // This processor number
 ntaps = *in; // The number of taps per processor
 /* If this is the last node, the output port is dev_null */
 if (thisProcessor >= (processors-1))
 out = dev_null;
 /* Send the parameters to the next node */
 *out = processors; // Number of processors
 *out = (thisProcessor+1); // Number of next processor
 *out = ntaps; // Number of taps per node

 for (;;) {

 /* Perform FIR */

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 25

 tmpOut = FIR(ntaps, *in);

 /* Shift the delay line */
 zOut = shift(ntaps, *in);
 /* Save tmpOut in memory (for debug) */
 result[i++] = tmpOut;

 /* Send outputs to next node */
 *out = tmpOut; // Partial FIR sum
 *out = zOut; // Shifted out value
 } /* end for() */
 } /* end main() */

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 26

Appendix E: CmpwareTorus.h Source Code

/*
**
** This defines the shared memory and links in the 'Torus' topology.
** This must agree with the values in the memory map for the
** hardware and the simulation model.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#ifndef _CMPWARETORUS_H_
#define _CMPWARETORUS_H_

/* The Memory Mapped IO Ports */
typedef volatile int *Port;
/* A shared memory address */
typedef unsigned char *Address;

/* The size of the local memory */
#define LOCAL_MEMORY_SIZE (32 * 1024)
/* The size of the shared memory */
#define SHARED_MEMORY_SIZE (8 * 1024)

/* Memory Mapped IO ports */
#ifdef SELFHOSTED
 /* For self-hosted testing, just make a pointer to an int */
 Port north[1];
 Port east[1];
 Port south[1];
 Port west[1];
 Port dev_null[1];
#else
 /* Point to links in hardware memeory map */
 Port north = (Port) 0x80000000;
 Port east = (Port) 0x80000004;
 Port south = (Port) 0x80000008;
 Port west = (Port) 0x8000000c;
 Port dev_null = (Port) 0x80000010;
#endif /* SELFHOSTED */

/* Shared Memory */
#ifdef SELFHOSTED
 /* For self-hosted testing, just allocate arrays */
 #include <stdio.h>

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

FIR Application Page 27

 Address northSharedMemory[SHARED_MEMORY_SIZE];
 Address eastSharedMemory[SHARED_MEMORY_SIZE];
 Address southSharedMemory[SHARED_MEMORY_SIZE];
 Address westSharedMemory[SHARED_MEMORY_SIZE];
#else
 /* else define shared memory addresses corresponding to the hardware */
 Address northSharedMemory = (Address) LOCAL_MEMORY_SIZE;
 Address eastSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
SHARED_MEMORY_SIZE);
 Address southSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
(2*SHARED_MEMORY_SIZE));
 Address westSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
(3*SHARED_MEMORY_SIZE));
#endif /* SELFHOSTED */

#endif /* _CMPWARETORUS_H_ */

Version 2.0.0 (January 30, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

