
Hetero Application Page 1

Hetero: Demonstration Application
for the

Cmpware CMP-DK
(Demo Version 2.0 for Eclipse 3.0)

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is a
multiprocessor simulation and software development environment. It provides fast and
efficient modeling of multiprocessor architectures as well as support for software
development on such systems. The goal of supporting software development is
achieved by providing an interactive, display-rich environment that permits large
amounts of information to be displayed in a fast, simple and uncluttered format. Such
capabilities are essential in analyzing the behavior of multiprocessor systems.

This demonstration version of the Cmpware CMP-DK (version 2.0) for Eclipse 3.0 and
higher contains all features of the standard toolkit, but restricts the simulation model to
a 3 x 3 heterogeneous array of MIPS32 and SPARC-8 processors. All simulation
capabilities and displays are included. This includes:

Demonstration Applications

Avaliable for use with the Cmpware CMP-DK version 2.0 is a series of demonstration
applications which are presented to introduce some of the features in the CMP-DK.
These applications start with small, simple programs gradually building up to more
complex applications exploiting relatively low-level parallelism. These demonstrations
stand alone and can be studied in any order, but it is best to start with the early
examples, which are smaller and simpler and build up to the larger ones. This provides

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

 Source Code Tracing
 Source Code Variables
 Disassembly
 Memory Display
 Power Estimator

 General Purpose Registers
 Special Purpose Registers
 Command Line Interface
 Link Utilization

Hetero Application Page 2

a tutorial-like introduction to the features in the Cmpware CMP-DK.

While these demonstrations cover the application development aspects of this tool,
much of the power in the Cmpware CMP-DK is in the ability to quickly model relatively
complex multiprocessor systems. This modeling activity is reserved for licensed copies
of the software. For more information on getting licensed copies of the Cmpware CMP-
DK, contact Cmpware at info@cmpware.com.

The groups of files in this tutorial package are as follows:

 Introduction - An introduction to all of the applications
 Simple - A simple, single processor test application
 Ping Pong - a simple two processor application
 Hetero - the Ping Pong application on two different types of processors
 FIR Filter - A multiprocessor Finite Impulse Response (FIR) Filter
 AES Encryption - A multiprocessor AES encryption implementation
 FFT Filter - a multiprocessor FFT filter using shared memory
 FFT Filter 2 - a multiprocessor FFT filter using communication channels

These example applications assume that the Cmpware CMP-DK has already been
successfully installed on your system. For more information on acquiring and installing
either the free demonstration version or the fully licensed verrsion, see the Cmpware
web site.

The source and compiled code for these demonstration applications can be
downloaded from the Cmpware Web site as a compressed ZIP archive at:

http://www.cmpware.com/Apps/CmpwareApps_2_0.zip

The Hetero Application

After the Ping Pong application has introduced multiprocessor operation of the
Cmpware CMP-DK, the Hetero application introduces so-called Heterogeneous
multiprocessor operation. This simply means a multiprocessor with more than one type
of processor. Conversely, a multiprocessor with only a single type of processing
element is often called a Homogeneous multiprocessor. In this case, the previous Ping
Pong application will be run on two different types of processors, a MIPS32 and a
SPARC-8. This demonstrates the ability of the Cmpware CMP-DK to support multiple
processor types transparently in the IDE. It also shows that source code can be
transparently, and often with no modification, be moved to a new processor architecture

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Hetero Application Page 3

with only a simple recompilation.

The Hetero code is all in the compressed ZIP archive under the Hetero directory, and
contains source code, Makefile, linker directives file, compiled relocatable object files
and finally, fully linked executable ELF files. In fact, all of the demonstration
applications will contain these types of files. All have been built using the Gnu GCC
compiler with a version higher than 3.0. If you have access to a MIPS32 and Sparc-8
compilers which produces standard ELF executable with DWARF2 debug information,
you may modify these files and re-compile them and test the results and use them in
the Cmpware CMP-DK.

Running the Hetero Application

First, the Cmpware perspective in Eclipse should be opened. This is typically done
from the Eclipse main menu using the Window --> Open Perspective --> Cmpware
menu command. If you have problems getting this view to come up, or have not
installed the Cmpware CMP-DK, see the installation guide available on the Cmpware
web site. It will guide you in installing the software.

The Cmpware CMP-DK used in this example is the demonstration version of the
software and begins with the default 3 x 3 array of processors. The first row contains
three MIPS32 processors, the second row three Sparc-8 processors, and the third row
contains another three MIPS32 processors.

Like the previous examples, executable code is loaded into the first processor in the
upper left corner of the array. To load this processor with executable code, select the
processor with the mouse. It should be highlighted with a grey background and the
Status window at the bottom should indicate that the processor MIPS32(0,0) is
selected.

Use the Load button () to bring up a file selection dialog. Using this file selection
dialog, select the Ping_mips.elf file from the list of files for the Hetero demonstration as
shown in Figure 1. A message in the Status window at the bottom of the IDE should
indicate that the file was successfully loaded into the MISP32 processor at location
(0,0).

Next, select the second processor on the first column with the mouse. It should be
highlighted with a grey box much like the (0,0) processor was initially. The Status
window should indicate that the Sparc-8 processor at (1,0) is selected. Again using the
Load button (), bring up a file selection dialog. Using this file selection dialog, select
the Pong_sparc.elf file from the list of files for the Ping Pong demonstration. A

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Hetero Application Page 4

message in the Status window should indicate that the file was successfully loaded into
the Sparc-8 processor at location (1,0). Note that these two executable ELF files are
compiled for completely different architectures. Loading them to the wrong type of
processor will typically result in illegal opcode errors upon execution.

At this point, the executable file Ping_mips.elf is loaded into the processor in the upper
left corner, and the executable file Pong_sparc.elf is loaded into the processor just
below the MIPS32 at (0,0). This location is important because the software expects to
communicate with the neighboring node in a specific manner.

Clicking on the Step button () advances the global clock. Each step updates the
displays in the Cmpware CMP-DK. In the view in Figure 2, the multiprocessor has been

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 1: Loading the Hetero ELF executable files.

Hetero Application Page 5

stepped through 14 cycles, as indicated by the Status window. Unfortunately, both
processors which were loaded with executable code appear to be idle and displayed in
a greyed color. Some investigation will be necessary to find out why this multiprocessor
code is not executing.

The first thing to do is to find out exactly where in the code the processors have stalled.
Figure 3 shows the MIPS32 processor Source Code and Links views. The code
appears to be stalled after sending a value to the south link, and is waiting for data to
be returned on the south link.

The Link display shows that data has indeed been written to the Output port at address
0x80000008. The CmpwareTorus.h definition in Appendix C file indicates that this is

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 2: Executing the Hetero files.

Hetero Application Page 6

the south port, as expected. The asterisk character ("*") indicates that the port contains
data ready to be read. Interestingly, there seems to be no input data ready to be read.
The asterisk in the Input port at 0x80000010 corresponds to the "/dev/null" port, which
can always be read and is part of the network model simply as a software convenience.
None of the four communication ports appears to have available data.

Figure 4 shows the same Source Code and Link views, but for the Sparc processor at
index (1,0) in the processor array. This view is changed by returning to the main CMP
Array view, selecting the Sparc processor, the returning to the Source Code view.
This ability to quickly change processor views is one of the strengths of the Cmpware
IDE. Because all of the views are continuously updated, a unified view of the
multiprocessor is always presented. It is never possible to become confused by looking

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 3: The Cmpware CMP-DK Links and Source Code views.

Hetero Application Page 7

at windows and not understanding which processor they are associated with. This can
become a significant problem in other similar IDEs, particularly when the number of
processors becomes large.

The Sparc processor in Figure 4 is even more perpelxing. It is stalled on the first
attempt to read from the north Link. And no data seems to be available on any of the
other communication links. This unusual situation has a simple solution, and one that is
a common source of error in such multiprocessor systems.

Inspecting some of the other nearby processors in the system indicates that data is
available on some of their communication links. So the data has gone somewhere, just
not to the place it was expected. The reason is mostly in the definition of the ordinal

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 4: The Cmpware CMP-DK Links and Source Code views.

Hetero Application Page 8

points. The hardware model appears to believe that a Cartesian coordinate system
with (0,0) in the lower left corner is the orientation, with "north" being "up".
Unfortunately, the default software presentation assumes processor (0,0) in the upper
left corner, again with "north" being "up".

The solution is just to flip the array with the Flip button () in the CMP Array display
window. This puts the (0,0) processor index at the lower left. as in Figure 5. Note that
this is merely a change in the way that the processor array is displayed. No changes to
the model have been made. It is just a simple way to re-orient the display in two
common arrangements. Unfortunately, the code is now loaded in the wrong
processors.

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 5: The flipped array view.

Hetero Application Page 9

First, the array should be reset using the Reset button () to prevent the erroneously
loaded code from continuing to execute. Note that in the in the demonstration version
the default MIPS32 and Sparc models load a simple loop of assembly language code
into address zero upon reset. This means that all of the processors in the array will be
executing some code on each step, but most will be executing this default assembly
language loop. This prevents various errors should the processors attempt to execute
from uninitialized memory and is just a developer convenience.

Figure 6 shows the flipped array with the Ping_mips.elf code loaded into the processor
in the upper left (which is now processor (0, 2)) and the Ping_sparc.elf code loaded into
the processor below. Figure 6 shows the heterogeneous Ping Pong application
executing successfully, with the processors taking turns execuuting and going idle, and

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 6: The working Hetero application after flipping and reloading.

Hetero Application Page 10

with the variable i incrementing with each round-trip.

As in the previous Ping Pong application, the Run button () may be pressed and an
animated view of the executing can be observed. The Stop button () is used to halt
execution of a running multiprocessor program.

Lastly, the Cmpware IDE is notable for its transparent support for heterogeneous
multiprocessors. If the MIPS32 processor is selected in the CMP Array view and the
main window is switched to the Disassembly view, the expected MIPS32 assembly
language can be seen. Similarly, the Register and Special Register tabs on the left
bring up MIPS32 registers and special registers with the most recent values as in Figure
7.

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 7: The registers and disassembly for a MIPS32 processor.

Hetero Application Page 11

If the Sparc-8 processor is similarly selected in the CMP Array view and the views
returned to the Disassembly and Registers as in Figure 8, the expected Sparc
assembly language and registers, all with the most recent values, can be viewed.

 This tightly integrated model and display approach permits a wide variety of different
processing elements to work together while providing fast, uniform access to the
processor data. Such fast and uniform access to data greatly improves the ability to
produce and program such heterogeneous multiprocessor systems. In addition, the
use of a single family of windows all displaying data from the same processor greatly
helps to avoid confusion common in multi-window approaches. The vast amount of
data produced by a multiprocessor quickly overwhelms users who attempt to view the

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 8: The registers and disassembly for a Sparc-8 processor.

Hetero Application Page 12

operation of more than a small number of processors simultaneously. Fast switching
between processors and a self-consistent interface help avoid many of the problems
associated with multiprocessor software development and debug.

Conclusions

The Cmpware CMP-DK is a rich display environment combining fast simulation and
flexible multiprocessor modeling. This makes it an ideal environment for architecture
modeling and software development for these systems.

While the execution and display features of the Cmpware CMP-DK are notable, much
of the power of the system lies in its ability to quickly and flexibly construct processor,
network, link and multiprocessor models. This modeling capability is a large part of the
commercial version of the Cmpware CMP-DK.

For more information on the commercial version of the Cmpware CMP-DK see our web
site at:

http://www.cmpware.com/

or send an email to:

info@cmpware.com

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Hetero Application Page 13

Appendix A: Ping.c Source Code

/*
** This implements the 'Ping' half of the 'Ping Pong' demo. It
** sends a value to the south port, then reads a value from the
** north port. In the heterogeneous processor demo using the
** default Cmpware configuration, the executable ELF file from
** this code should be compiled for a MIPS32 processor and loaded
** into the (0,0) processor.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#include "CmpwareTorus.h"
int main(int argc, char *argv[]) {
 int i = 0;
 /* Loop forever */
 for(;;) {

 /* Send an incremented value */
 *south = (i + 1);

 /* Receive a value */
 i = *south;

 } /* end for() */
 } /* end main() */

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Hetero Application Page 14

Appendix B: Pong.c Source Code

/*
** This implements the 'Pong' half of the 'Ping Pong' demo. It
** sends a value to the north port, then reads a value from the
** south port. In the heterogeneous processor demo using the
** default Cmpware configuration, the executable ELF file from
** this code should be compiled for an SPARC-8 and loaded into
** the (1,0) processor.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#include "CmpwareTorus.h"
int main(int argc, char *argv[]) {
 int i = 0;
 /* Loop forever */
 for(;;) {

 /* Receive a value */
 i = *north;

 /* Echo value back value */
 *north = i;

 } /* end for() */
 } /* end main() */

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Hetero Application Page 15

Appendix C: CmpwareTorus.h Source Code

/*
**
** This defines the shared memory and links in the 'Torus' topology.
** This must agree with the values in the memory map for the
** hardware and the simulation model.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#ifndef _CMPWARETORUS_H_
#define _CMPWARETORUS_H_

/* The Memory Mapped IO Ports */
typedef volatile int *Port;
/* A shared memory address */
typedef unsigned char *Address;

/* The size of the local memory */
#define LOCAL_MEMORY_SIZE (32 * 1024)
/* The size of the shared memory */
#define SHARED_MEMORY_SIZE (8 * 1024)

/* Memory Mapped IO ports */
#ifdef SELFHOSTED
 /* For self-hosted testing, just make a pointer to an int */
 Port north[1];
 Port east[1];
 Port south[1];
 Port west[1];
 Port dev_null[1];
#else
 /* Point to links in hardware memeory map */
 Port north = (Port) 0x80000000;
 Port east = (Port) 0x80000004;
 Port south = (Port) 0x80000008;
 Port west = (Port) 0x8000000c;
 Port dev_null = (Port) 0x80000010;
#endif /* SELFHOSTED */

/* Shared Memory */
#ifdef SELFHOSTED
 /* For self-hosted testing, just allocate arrays */
 #include <stdio.h>

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Hetero Application Page 16

 Address northSharedMemory[SHARED_MEMORY_SIZE];
 Address eastSharedMemory[SHARED_MEMORY_SIZE];
 Address southSharedMemory[SHARED_MEMORY_SIZE];
 Address westSharedMemory[SHARED_MEMORY_SIZE];
#else
 /* else define shared memory addresses corresponding to the hardware */
 Address northSharedMemory = (Address) LOCAL_MEMORY_SIZE;
 Address eastSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
SHARED_MEMORY_SIZE);
 Address southSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
(2*SHARED_MEMORY_SIZE));
 Address westSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
(3*SHARED_MEMORY_SIZE));
#endif /* SELFHOSTED */

#endif /* _CMPWARETORUS_H_ */

Version 2.0.0 (January 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

