
Ping Pong Application Page 1

Ping Pong: Demonstration Application
for the

Cmpware CMP-DK
(Demo Version 2.0 for Eclipse 3.0)

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is a
multiprocessor simulation and software development environment. It provides fast and
efficient modeling of multiprocessor architectures as well as support for software
development on such systems. The goal of supporting software development is
achieved by providing an interactive, display-rich environment that permits large
amounts of information to be displayed in a fast, simple and uncluttered format. Such
capabilities are essential in analyzing the behavior of multiprocessor systems.

This demonstration version of the Cmpware CMP-DK (version 2.0) for Eclipse 3.0 and
higher contains all features of the standard toolkit, but restricts the simulation model to
a 3 x 3 heterogeneous array of MIPS32 and SPARC-8 processors. All simulation
capabilities and displays are included. This includes:

Demonstration Applications

Avaliable for use with the Cmpware CMP-DK version 2.0 is a series of demonstration
applications which are presented to introduce some of the features in the CMP-DK.
These applications start with small, simple programs gradually building up to more
complex applications exploiting relatively low-level parallelism. These demonstrations
stand alone and can be studied in any order, but it is best to start with the early
examples, which are smaller and simpler and build up to the larger ones. This provides

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

 Source Code Tracing
 Source Code Variables
 Disassembly
 Memory Display
 Power Estimator

 General Purpose Registers
 Special Purpose Registers
 Command Line Interface
 Link Utilization

Ping Pong Application Page 2

a tutorial-like introduction to the features in the Cmpware CMP-DK.

While these demonstrations cover the application development aspects of this tool,
much of the power in the Cmpware CMP-DK is in the ability to quickly model relatively
complex multiprocessor systems. This modeling activity is reserved for licensed copies
of the software. For more information on getting licensed copies of the Cmpware CMP-
DK, contact Cmpware at info@cmpware.com.

The groups of files in this tutorial package are as follows:

 Introduction - An introduction to all of the applications
 Simple - A simple, single processor test application
 Ping Pong - a simple two processor application
 Hetero - the Ping Pong application on two different types of processors
 FIR Filter - A multiprocessor Finite Impulse Response (FIR) Filter
 AES Encryption - A multiprocessor AES encryption implementation
 FFT Filter - a multiprocessor FFT filter using shared memory
 FFT Filter 2 - a multiprocessor FFT filter using communication channels

These example applications assume that the Cmpware CMP-DK has already been
successfully installed on your system. For more information on acquiring and installing
either the free demonstration version or the fully licensed verrsion, see the Cmpware
web site.

The source and compiled code for these demonstration applications can be
downloaded from the Cmpware Web site as a compressed ZIP archive at:

http://www.cmpware.com/Apps/CmpwareApps_2_0.zip

The Ping Pong Application

After the Simple application has introduced the basic operation of the Cmpware CMP-
DK, the Ping Pong application introduces some of the basics of multiprocessor
simulation and software development. This applications consists of two compiled ELF
executable files called Ping.elf and Pong.elf. These each execute on neighboring
MIPS32 processors and communicate with each other. Specifially, they send a single
value back and forth, incrementing it once on each round trip.

The Ping Pong code is all in the compressed ZIP archive under the PingPong directory,
and contains source code, Makefile, linker directives file, compiled relocatable object

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Ping Pong Application Page 3

files and finally, fully linked executable ELF files. In fact, all of the demonstration
applications will contain these types of files. All have been built using the Gnu GCC
compiler with a version higher than 3.0. If you have access to a MIPS32 compiler
which produces standard ELF executable with DWARF2 debug information, you may
modify these files and re-compile them and test the results and use them in the
Cmpware CMP-DK.

Running the Ping Pong Application

First, the Cmpware perspective in Eclipse should be opened. This is typically done
from the Eclipse main menu using the Window --> Open Perspective --> Cmpware
menu command. If you have problems getting this view to come up, or have not
installed the Cmpware CMP-DK, see the installation guide available on the Cmpware
web site. It will guide you in installing the software.

This Cmpware CMP-DK used in this example is of the demonstration version of the
software and begins with the default 3 x 3 array of processors. The first row contains
three MIPS32 processors, the second row three Sparc-8 processors, and the third row
contains another three MIPS32 processors.

Like the previous Simple example, executable code is loaded into the first processor in
the upper left corner of the array. To load this processor with executable code, select
the processor with the mouse. It should be highlighted with a grey background and the
Status window at the bottom should indicate that the processor MIPS32(0,0) is
selected.

Use the Load button () to bring up a file selection dialog. Using this file selection
dialog, select the Ping.elf file from the list of files for the Ping Pong demonstration as
shown in Figure 1. A message in the Status window at the bottom of the IDE should
indicate that the file was successfully loaded into the MISP32 processor at location
(0,0).

Next, select the second processor on the first row with the mouse. It should be
highlighted with a grey box much like the (0,0) processor was initially. The Status
window should indicate that the MIPS32 processor at (0,1) is selected. Again using the
Load button (), bring up a file selection dialog. Using this file selection dialog, select
the Pong.elf file from the list of files for the Ping Pong demonstration. A message in
the Status window should indicate that the file was successfully loaded into the MISP32
processor at location (0,1).

At this point, the executable file Ping.elf is loaded into the processor in the upper left

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Ping Pong Application Page 4

corner, and the executable file Pong.elf is loaded into the adjacent processor. This
location is important because the software expects to communicate with the
neighboring node in a specific manner.

Clicking on the Step button () advances the global clock. Each step updates the
displays in the Cmpware CMP-DK. In the view in Figure 2, the multiprocessor has been
stepped through 34 cycles, as indicated by the Status window, and the value of the
incremented token passed back and forth between the two processors is now 2. Also
note that the second processor is displayed in a greyed color. As the processors
communicate and wait for communication, they will alternate active and waiting (grey
and colored).

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 1: Loading the Ping Pong ELF executable files.

Ping Pong Application Page 5

Rather than single stepping with the Step button (), the Run button () can be used
to animate the display. Here the "ping pong" back and forth of the application is more
obvious. in addition, the value of the variable i in the Variables window can be watched
as it increments.

Note that even though the underlying simulation engine runs at approximately two
million instructions per second, the updating of the displays is typically the limiting factor
in performance when such an animation is run. But this view can be very valuable in
watching communication patterns and analyzing the utilization of the processing
resources. The Preference Page for the Cmpware CMP-DK contains a parameter to
set the Step Size, which changes the number of simulation cycles per update of the
IDE. The default is one, but it can be changed using the Windows --> Preferences

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 2: Executing the Ping.elf and Pong.elf files.

Ping Pong Application Page 6

menu item and selecting the Cmpware preference page. The Step Size field is one of
the settable parameters on this page.

While the previous example showed animation on the main display, all displays in the
IDE are 'live' and update with each step of the simulation.

Figure 3 shows the C Source Code window and the Links window. Note that these
windows can be selected even while the simulation is running and updating will
continue. In the case of the Source Code window, the source code line being
executed wil lbe displayed, highlighted, in the center of the Source Code window.

The Link window shows information on the interprocessor communication links. These

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 3: The Cmpware CMP-DK Links and Source Code views.

Ping Pong Application Page 7

are essentially synchronized registers that may be written from one processor and read
from another. In the default configuration, they are set up in a nearest neighbor pattern
producing a mesh or torus topology.

Another way to view these links is a one word FIFO. These links are memory mapped
to various addresses, in this case starting at 0x8000000. The Link display in this case
shows four input links and four output links corresponding to the four directions in the
mesh network. An additional input and output link are provided as a conveninece to
software. These are "null" links that may be read and written at any time. These may
be considered analogous to the "/dev/null" file in Unix systems. It is a handy place to
send data that is no longer needed.

The simulation model and the software must agree on the memory map of system,
including the memory mapped IO of the link registers. The memory map of the model
is beyond the scope of this document, but the memory map of the software is specified
in the CmpwareTorus.h include file as in Appendix C. The links are defined as north,
south, east and west and are defined at addresses starting at 0x8000000. These
values are used in the Ping and Pong source code to define the communication. Since
these are memory mapped, they can be accessed as a simple pointer such as *north.

It should also be noted that communication across processors is as simple as assigning
a value to a variable. But some care must be taken to be sure that for each variable
written, one is read. This is similar to uniprocessor code, where variable may also be
overwritten or ignored. But when the event spans two processors, some extra care
must be taken.

This is where the Cmpware CMP-DK has its most valuable use. If mis-communication
occurs across processors, it is easy to select the involved processors and inspect these
variables and code and see where the problem is. It is the ability to rapidly inspect all
processors in the system and view high and low level data quickly that permits rapid
development and debug of such multiprocessor applications.

Conclusions

The Cmpware CMP-DK is a rich display environment combining fast simulation and
flexible multiprocessor modeling. This makes it an ideal environment for architecture
modeling and software development for these systems.

While the execution and display features of the Cmpware CMP-DK are notable, much
of the power of the system lies in its ability to quickly and flexibly construct processor,
network, link and multiprocessor models. This modeling capability is a large part of the
commercial version of the Cmpware CMP-DK.

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Ping Pong Application Page 8

For more information on the commercial version of the Cmpware CMP-DK see our web
site at:

http://www.cmpware.com/

or send an email to:

info@cmpware.com

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Ping Pong Application Page 9

Appendix A: Ping.c Source Code

/*
** This implements the 'Ping' half of the 'Ping Pong' demo. It
** sends a value to the east port, then reads a value from the
** west port. The executable ELF file from this code should
** be compiled for a MIPS32 processor and loaded into the
** (0,0) processor.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#include "CmpwareTorus.h"
int main(int argc, char *argv[]) {
 int i = 0;
 /* Loop forever */
 for(;;) {

 /* Send an incremented value */
 *east = (i + 1);

 /* Receive a value */
 i = *east;

 } /* end for() */
 } /* end main() */

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Ping Pong Application Page 10

Appendix B: Pong.c Source Code

/*
** This implements the 'Ping' half of the 'Ping Pong' demo. It
** sends a value to the east port, then reads a value from the
** west port. The executable ELF file from this code should
** be compiled for a MIPS32 processor and loaded into the
** (0,0) processor.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#include "CmpwareTorus.h"
int main(int argc, char *argv[]) {
 int i = 0;
 /* Loop forever */
 for(;;) {

 /* Send an incremented value */
 *east = (i + 1);

 /* Receive a value */
 i = *east;

 } /* end for() */
 } /* end main() */

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Ping Pong Application Page 11

Appendix C: CmpwareTorus.h Source Code

/*
**
** This defines the shared memory and links in the 'Torus' topology.
** This must agree with the values in the memory map for the
** hardware and the simulation model.
**
** Copyright (c) 2005, 2006 Cmpware, Inc. All rights reserved.
**
*/

#ifndef _CMPWARETORUS_H_
#define _CMPWARETORUS_H_

/* The Memory Mapped IO Ports */
typedef volatile int *Port;
/* A shared memory address */
typedef unsigned char *Address;

/* The size of the local memory */
#define LOCAL_MEMORY_SIZE (32 * 1024)
/* The size of the shared memory */
#define SHARED_MEMORY_SIZE (8 * 1024)

/* Memory Mapped IO ports */
#ifdef SELFHOSTED
 /* For self-hosted testing, just make a pointer to an int */
 Port north[1];
 Port east[1];
 Port south[1];
 Port west[1];
 Port dev_null[1];
#else
 /* Point to links in hardware memeory map */
 Port north = (Port) 0x80000000;
 Port east = (Port) 0x80000004;
 Port south = (Port) 0x80000008;
 Port west = (Port) 0x8000000c;
 Port dev_null = (Port) 0x80000010;
#endif /* SELFHOSTED */

/* Shared Memory */
#ifdef SELFHOSTED
 /* For self-hosted testing, just allocate arrays */
 #include <stdio.h>

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Ping Pong Application Page 12

 Address northSharedMemory[SHARED_MEMORY_SIZE];
 Address eastSharedMemory[SHARED_MEMORY_SIZE];
 Address southSharedMemory[SHARED_MEMORY_SIZE];
 Address westSharedMemory[SHARED_MEMORY_SIZE];
#else
 /* else define shared memory addresses corresponding to the hardware */
 Address northSharedMemory = (Address) LOCAL_MEMORY_SIZE;
 Address eastSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
SHARED_MEMORY_SIZE);
 Address southSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
(2*SHARED_MEMORY_SIZE));
 Address westSharedMemory = (Address) (LOCAL_MEMORY_SIZE +
(3*SHARED_MEMORY_SIZE));
#endif /* SELFHOSTED */

#endif /* _CMPWARETORUS_H_ */

Version 2.0.0 (January 23, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

