
Building the Gnu GCC Compiler Page 1

Building a Gnu GCC Cross Compiler

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is based
around fast simulation models for multiple processors. While the Cmpware CMP-DK
comes with several popular microprocessor models included, it does not supply tools
for programming these processors. One popular microprocessor development tool
chain is the Gnu tools from the Free Software Foundation. These tools are most often
used in typical self-hosted development environments, where the processor and
operating system used for development is also the processor and operating system
used to execute the code being developed.

In the case of development for the Cmpware CMP-DK, it is more likely that the tools will
be cross targeted. This means that the host machine used for software development
uses one processor and operating system and the target system uses a different
processor and operating system. This arrangement does not necessarily complicate
the processor itself; it still only has to produce code for a single target. The major
problem with cross targeted tools is that the possible combinations of host and target
can be large and the audience for such tools relatively small. So such tools tend to be
less rigorously maintained than more popular self-hosted tools.

This document briefly describes the complete process of building a cross targeted Gnu
tool chain. It uses a popular combination of host and target, and the process is know to
work correctly. This document does not address the problems that may occur in the
build process which may require specialized knowledge of the internals of the Gnu
tools. Repairing a broken build for such a system can quickly become very complicated
and is well beyond the scope of this document.

Specifically, this document describes the sequence of commands used to build the Gnu
C compiler (GCC) for a SPARC8 target. This was done on October 25, 2005 on a Dell
Precision 340 running Debian Linux version 3.1. It may be possible (and simpler) to
download and install one of the pre-built 'binary' distributions for your system. On-line
documentation on this process can be found at: http://gcc.gnu.org/install/

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building the Gnu GCC Compiler Page 2

Downloading the Binutils Distribution

The binutils for the Gnu compiler is a group of binary utility used to help manipulate the
object files produced by the compiler. These utilities have to be built and installed
before the compiler can be built and installed. It is beyond the scope of this document
to give details on these utility programs. For more information on the binutils, see the
main documentation web page for Gnu Binutils at:
http://sourceware.org/binutils/docs-2.16/ This is the primary reference for the Gnu
Binutils.

The first step in building and installing the binutils is to download the complete
distribution. This is a set of files including source code and various configuration and
documentation files. The latest release of the Gnu binutils can be downloaded from
http://ftp.gnu.org/gnu/binutils/ or one of its mirror sites. From this download site, the
file binutils-2.16.tar.bz2 should be downloaded and saved. This is a 12 MB
file and contains the complete binutils distribution. This file must first be uncompressed
with the command:

This produces a 79 MB file named binutils-2.16.tar. Next the archive should be
unpacked with the command:

This produces a large directory tree rooted at binutils-2.16/ filled with various files
and subdirectories containing the distribution.

Building the Binutils

In the binutils-2.16/ directory, make a new directory called objdir/ and go to
that directory and run the configure script. This is accomplished with the following
commands:

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

$ bunzip2 binutils-2.16.tar.bz2

$ tar xvf binutils-2.16.tar

Building the Gnu GCC Compiler Page 3

This command checks various system and compiler functions and builds an appropriate
Makefile. This script will print out quite a few status messages and ends with the
message "creating Makefile". This indicates that the script has run successfully
and produced a valid Makefile for this particular combination of host and target.

It is possible that this script may fail due to the software currently installed on the host
machine. While it is beyond the scope of this document to describe the many things
that could got wrong at this point, the solution to many problems is to use the most
recent version of the Gnu GCC self-hosted compiler. In this case, since we are building
the Gnu GCC 4.0.1 tools for a cross targeted system, it is advised that the most recent
available GCC be used on the host. That said, a quick check reveals that the GCC
used in this process was in fact version 3.3.5. While this script should work with any
standard ANSI C compiler, switching to GCC should be the first step if problems are
encountered.

At this point, a Makefile has been created and it can be run. As with the compiler, it
is advised that the most recent Gnu Make be used to build the binutils. While any
make program should work, problems encountered with non-Gnu implementations of
make are most easily addressed by switching to the most recent version of Gnu Make.
For reference, this example was implemented using Gnu Make version 3.80.

The binutils for the Sparc architecture can now be built with the command:

This process can take several minutes and will produce numerous status messages.
When the build is complete, the newly compiled executables can be installed. This
must be done using the superuser or root account, since the files will be installed in a
shared directory of the file system where they can be accessed by other users. The
commands to install the binutils are:

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

$ mkdir objdir
$ cd objdir
$../configure --target=sparc-elf

$ make

Building the Gnu GCC Compiler Page 4

This install command will copy the following files into the /usr/local/sparc-
elf/bin/ directory :

These executables are various utilities used by the Sparc GCC compiler to build and
manipulate libraries and object files. In addition, manual pages and other
supplementary material may have been installed by this command.

Once the binutils have been installed all of the source and object
code used in this process may be deleted.

Downloading GCC Distribution

The process for downloading, building and installing the Gnu GCC is a very similar
process to the one used to build the Gnu binutils, except of course, that a different set
of distribution files are used.

The first step in building and installing the Gnu GCC Compiler is to download the

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

$ su
password:
make install
exit
exit
$

$ ls -la /usr/local/sparc-elf/bin/
total 18812
drwxr-sr-x 2 root staff 4096 Oct 25 11:21 .
drwxr-sr-x 4 root staff 4096 Aug 11 11:06 ..
-rwxr-xr-x 2 root staff 2256236 Oct 25 11:21 ar
-rwxr-xr-x 2 root staff 3692422 Oct 25 11:21 as
-rwxr-xr-x 2 root staff 2976077 Oct 25 11:21 ld
-rwxr-xr-x 2 root staff 2231737 Oct 25 11:21 nm
-rwxr-xr-x 2 root staff 2844181 Oct 25 11:21 objdump
-rwxr-xr-x 2 root staff 2256231 Oct 25 11:21 ranlib
-rwxr-xr-x 2 root staff 2679790 Oct 25 11:21 strip
$

Building the Gnu GCC Compiler Page 5

complete distribution. This is a set of files including source code and various
configuration and documentation files. The latest release of the Gnu GCC compiler
distribution can be downloaded from
http://mirrors.rcn.net/pub/sourceware/gcc/releases/gcc-4.0.1/ or one of its mirror
sites. From this download site, the file gcc-4.0.1.tar.bz2 should be downloaded and
saved. This is a 31 MB file and contains the complete Gnu GCC distribution. This file
must first be uncompressed with the command:

This produces a 218 MB file named gcc-4.0.1.tar Next the archive should be
unpacked with the command:

This produces a large directory tree rooted at gcc-4.0.1/ filled with various files and
subdirectories containing the distribution.

 It is beyond the scope of this document to give details on Gnu GCC. For more
information on the Gnu GCC, see the main documentation web page for Gnu GCC at:
http://gcc.gnu.org/ This is the primary reference for the Gnu GCC.

Building the GCC Compiler

In the gcc-4.0.1/ directory, make a new directory called objdir/ and go to that
directory and run the configure script. This is accomplished with the following
commands:

Note that the ../configure command and flags are all executed as a single

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

$ bunzip2 gcc-4.0.1.tar.bz2

$ tar xvf gcc-4.0.1.tar

$ mkdir objdir
$ cd objdir
$../configure --target=sparc-elf --with-newlib\
--without-headers --with-gnu-as --with-gnu-ld\
--enable-languages=c --disable-nls

Building the Gnu GCC Compiler Page 6

command. The figure above shows the lines wrapped around because there is not
enough room on a single line for the entire command. Also note that some of these
flags may be redundant, but are specified to ensure that the correct GCC gets built.
These flags may be more necessary when building other non-Sparc compilers. For
instance, the --with-gnu-as specifies that the Gnu Assembler be used. Other
systems may default to other system specific assemblers more typically found in self
hosted environments. This ensures that the cross targeted compiler gets built correctly.
Similarly, the --enable-languages-c causes only a C compiler to be produced.
The default may produce other language compilers, including FORTRAN, Ada and / or
Java.

Like the configure command for the binutils, this configure command checks
various system and compiler functions and builds an appropriate Makefile. This
script will print out quite a few status messages and ends with the message "creating
Makefile". This indicates that the script has run successfully and produced a valid
Makefile for this particular combination of host and target.

Again, as with the binutils, it is possible that this script may fail due to the software
currently installed on the host machine. While it is beyond the scope of this document
to describe the many things that could got wrong at this point, the solution to many
problems is again to use the most recent version of the Gnu GCC self-hosted compiler.

At this point, a Makefile has been created and it can be run. As with the binutils, it
is advised that the most recent Gnu Make be used to build the GCC. The GCC for the
Sparc architecture can now be built with the command:

This process can take several minutes or even hours depending on the host machine
and the configuration and will produce numerous status messages. When the build is
complete, the newly compiled gcc executable can be installed. Again, as with the
binutils, this must be done using the superuser or root account, since the files will be
installed in a shared directory of the file system where they can be accessed by other
users. The commands to install the GCC are:

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

$ make

Building the Gnu GCC Compiler Page 7

Note that this install command copies a single executable file, gcc, into the /
usr/local/sparc-elf/bin/ directory. The previously installed binutils have
already been installed in this directory. As with the binutils, manual pages and other
supplementary material may have been installed by this command.

Once the Gnu GCC has been built and installed all of the source and object code used
in this process may be deleted.

These executables are various utilities used by the Sparc GCC compiler to build and
manipulate libraries and object files.

Finally, note that the /usr/local/bin directory also contains copies of these binary
executable utilities with "sparc-elf-" prefixed to their file names as shown below. In
addition, other files relating to libraries are installed at /usr/local/lib/gcc/sparc-
elf/4.0.1/ and Manual pages at /usr/local/man/man1 Other various support
files may also be installed at various locations in the file system.

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

$ su
password:
make install
exit
exit
$

$ ls -la /usr/local/sparc-elf/bin/
total 18856
drwxr-sr-x 2 root staff 4096 Oct 25 11:44 .
drwxr-sr-x 4 root staff 4096 Aug 11 11:06 ..
-rwxr-xr-x 2 root staff 2256236 Oct 25 11:21 ar
-rwxr-xr-x 2 root staff 3692422 Oct 25 11:21 as
-rwxr-xr-x 1 root staff 318811 Oct 25 11:44 gcc
-rwxr-xr-x 2 root staff 2976077 Oct 25 11:21 ld
-rwxr-xr-x 2 root staff 2231737 Oct 25 11:21 nm
-rwxr-xr-x 2 root staff 2844181 Oct 25 11:21 objdump
-rwxr-xr-x 2 root staff 2256231 Oct 25 11:21 ranlib
-rwxr-xr-x 2 root staff 2679790 Oct 25 11:21 strip
$

Building the Gnu GCC Compiler Page 8

Testing the Compiler

The basic test is just to be sure that the executable does execute This can be done by
invoking the gcc command with a flag to print out the version. This also ensures that
the correct executable is being references, not some older executable somewhere else
in the file system. This gives:

The next step is to actually compile a small piece of code and verify that it produces a
proper ELF file. Any simple C source file will work. The test file Test.c below simply
adds two integers.

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

$ ls -la /usr/local/bin/sparc*
-rwxr-xr-x 1 root staff 2197207 Oct 25 11:21 /usr/local/bin/sparc-elf-addr2line
-rwxr-xr-x 2 root staff 2256236 Oct 25 11:21 /usr/local/bin/sparc-elf-ar
-rwxr-xr-x 2 root staff 3692422 Oct 25 11:21 /usr/local/bin/sparc-elf-as
-rwxr-xr-x 1 root staff 2146114 Oct 25 11:21 /usr/local/bin/sparc-elf-c++filt
-rwxr-xr-x 1 root staff 320034 Oct 25 11:44 /usr/local/bin/sparc-elf-cpp
-rwxr-xr-x 2 root staff 318811 Oct 25 11:44 /usr/local/bin/sparc-elf-gcc
-rwxr-xr-x 2 root staff 318811 Oct 25 11:44 /usr/local/bin/sparc-elf-gcc-4.0.1
-rwxr-xr-x 1 root staff 15721 Oct 25 11:44 /usr/local/bin/sparc-elf-gccbug
-rwxr-xr-x 1 root staff 131850 Oct 25 11:44 /usr/local/bin/sparc-elf-gcov
-rwxr-xr-x 2 root staff 2976077 Oct 25 11:21 /usr/local/bin/sparc-elf-ld
-rwxr-xr-x 2 root staff 2231737 Oct 25 11:21 /usr/local/bin/sparc-elf-nm
-rwxr-xr-x 1 root staff 2679791 Oct 25 11:21 /usr/local/bin/sparc-elf-objcopy
-rwxr-xr-x 2 root staff 2844181 Oct 25 11:21 /usr/local/bin/sparc-elf-objdump
-rwxr-xr-x 2 root staff 2256231 Oct 25 11:21 /usr/local/bin/sparc-elf-ranlib
-rwxr-xr-x 1 root staff 440311 Oct 25 11:21 /usr/local/bin/sparc-elf-readelf
-rwxr-xr-x 1 root staff 2100147 Oct 25 11:21 /usr/local/bin/sparc-elf-size
-rwxr-xr-x 1 root staff 2072526 Oct 25 11:21 /usr/local/bin/sparc-elf-strings
-rwxr-xr-x 2 root staff 2679790 Oct 25 11:21 /usr/local/bin/sparc-elf-strip
$

$ /usr/local/sparc-elf/bin/gcc -v
Using built-in specs.
Target: sparc-elf
Configured with: ../configure --target=sparc-elf --
with-newlib --without-headers --with-gnu-as --with-gnu-
ld --enable-languages=c --disable-nls
Thread model: single
gcc version 4.0.1
$

Building the Gnu GCC Compiler Page 9

A simple attempt to compile this file results in the following error:

What this means is that the linker could not find the crt0.o file, which is the file
containing various default and initialization code expected by the compiler. One
approach is to provide a crt0 file by modifying an existing file of creating a new one from
scratch. These files are usually implemented in assembly language and require some
fairly specialized knowledge of the processor. For now, the alternative is to produce a
linkable (non-executable) object file and see if the code in this file looks like the
expected Sparc binary.

The command below produces a Test.o object file and returns with no error or status
messages, a sign of successful compilation.

The sparc-elf-objdump utility can be used to view the internals of
this file. The command below shows a valid and expected Sparc disassembly.

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

int main(int argc, char *argv[]) {
 int x = 1;
 int y = 2;
 int z;
 z = x + y;
} /* end main() */

$ /usr/local/sparc-elf/bin/gcc -g Test.c
/usr/local/lib/gcc/sparc-elf/4.0.1/../../../../sparc-
elf/bin/ld: crt0.o: No such file: No such file or
directory
collect2: ld returned 1 exit status
$

$ /usr/local/sparc-elf/bin/gcc -c -g -o Test.o Test.c
$

Building the Gnu GCC Compiler Page 10

Details of the DWARF2 debug information can be found using the readelf utility via
the command:

The output from this is long and somewhat cryptic and not reproduced here. But this
may be used to verify that proper DWARF2 has been included in the ELF file by the -g
flag.

Now that a Sparc binary has been we have produced a successfully, it is time to return
to the problem of getting an executable file rather than a linkable object file. The linker
expects a crt0.o file to be present by default. But this can be changed and new
instructions given to the linker. A linker directive file named Cmpware.lnk is shown in
Appendix A. This file just places the main code in the default .text section at
address zero, with other program data following. The linker command below links the

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

$ /usr/local/sparc-elf/bin/objdump -d Test.o
Test.o: file format elf32-sparc
Disassembly of section .text:
00000000 <main>:
 0: 9d e3 bf 88 save %sp, -120, %sp
 4: f0 27 a0 44 st %i0, [%fp + 0x44]
 8: f2 27 a0 48 st %i1, [%fp + 0x48]
 c: 82 10 20 01 mov 1, %g1
 10: c2 27 bf ec st %g1, [%fp + -20]
 14: 82 10 20 02 mov 2, %g1
 18: c2 27 bf f0 st %g1, [%fp + -16]
 1c: c4 07 bf ec ld [%fp + -20], %g2
 20: c2 07 bf f0 ld [%fp + -16], %g1
 24: 82 00 80 01 add %g2, %g1, %g1
 28: c2 27 bf f4 st %g1, [%fp + -12]
 2c: 81 e8 00 00 restore
 30: 81 c3 e0 08 retl
 34: 01 00 00 00 nop
$

$ /usr/local/bin/sparc-elf-readelf --debug-dump Test.o

Building the Gnu GCC Compiler Page 11

object file into an executable ELF / DWARF file.

As with the compiler, successful operation results in no status or error output from the
linker. To check the new Test.elf file produced by the command, we can use the
same objdump command that was used with the relocatable object file. The result is
below.

While this appears similar to the Test.o file, the linker has resolved all relocatable
references and fixed the addresses of code and variables. This file is now in
'executable' format rather than linkable object. Further probing with the objdump
utility confirms that Test.elf is indeed an executable ELF file with all symbols

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

$ /usr/local/sparc-elf/bin/ld -g -e 0x0000 -T Cmpware.lnk
-o Test.elf Test.o
$

$ /usr/local/sparc-elf/bin/objdump -d Test.elf
Test.elf: file format elf32-sparc
Disassembly of section .text:
00000000 <main>:
 0: 9d e3 bf 88 save %sp, -120, %sp
 4: f0 27 a0 44 st %i0, [%fp + 0x44]
 8: f2 27 a0 48 st %i1, [%fp + 0x48]
 c: 82 10 20 01 mov 1, %g1
 10: c2 27 bf ec st %g1, [%fp + -20]
 14: 82 10 20 02 mov 2, %g1
 18: c2 27 bf f0 st %g1, [%fp + -16]
 1c: c4 07 bf ec ld [%fp + -20], %g2
 20: c2 07 bf f0 ld [%fp + -16], %g1
 24: 82 00 80 01 add %g2, %g1, %g1
 28: c2 27 bf f4 st %g1, [%fp + -12]
 2c: 81 e8 00 00 restore
 30: 81 c3 e0 08 retl
 34: 01 00 00 00 nop
$

Building the Gnu GCC Compiler Page 12

resolved and is in 'little endian' format. See the '--help' command line flag for more
information on the objdump command.

Using the Cmpware CMP-DK

Once the operation of the GCC compiler is verified, it can be used in conjunction with
the Cmpware CMP-DK multiprocessor software development environment. To test the
operation of the compiled test code, a Sparc processor or group of processors should
be configured and the Test.elf file loaded into processor memory. If the source
file Test.c is in the same location as when the file was compiled, or is in the same
directory as the Test.elf file, the Cmpware CMP-DK should provide source-level
tracing as well as a display of source level variables as execution proceeds.

While the operation of the Cmpware CMP-DK is beyond the scope of this document, a
four processor configuration of Sparc processors was set up and the Test.elf file
loaded into all four processors. The figure below shows the Disassembly and
Variables views after several cycles of execution, and the sum of the two integers is
plainly seen.

Conclusions

This document describes the downloading, building and use of the Gnu GCC compiler
in a cross targeted environment. In this case, a Linux host is used to create a GCC C

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building the Gnu GCC Compiler Page 13

compiler for the Sparc processor. While this procedure may be used to build other
cross targeted compilers, the end results may vary substantially depending on the
particular host, GCC distribution and processor selected. In many cases, older of less
popular processors may require significant modification of the source code to produce a
working compiler. This may be a substantial development effort depending on the
development environment required. But for more popular host platforms and target
processors, the procedure can be accomplished in a few minutes with the commands
described in this document.

Finally, it is possible to use of the GCC compiler within the Eclipse environment used by
the Cmpware CMP-DK. The Eclipse C Development Toolkit (CDT) permits Makefiles to
be created and edited and builds managed from within the IDE. This, combined with
the Cmpware CMP-DK makes a very powerful programming environment for
multiprocessors. The installation and use of the Eclipse CDT is beyond the scope of
this document, but more information can be found at: http://www.eclipse.org/cdt/
Care should be taken in installing the CDT in Eclipse. Version compatibility has been
an issue. Be sure to read all applicable documents to ensure that the correct version
for your system is installed.

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building the Gnu GCC Compiler Page 14

Appendix A - The Cmpware.lnk Linker Directive File

/*
** Copyright (c) 2004 Cmpware, Inc. All rights reserved.
*/

_gp = ABSOLUTE(. + 0x7ff0);

SECTIONS {
 .text 0 : { *(.text) }
 .rodata ALIGN(8) : { *(.rodata) }
 .sdata ALIGN(8) : { *(.sdata) }
 .data ALIGN(8) : { *(.data) }
 .bss ALIGN(8) : { *(.bss) }
 /* DWARF 1 */
 .debug 0 : { *(.debug) }
 .line 0 : { *(.line) }
 /* GNU DWARF 1 extensions */
 .debug_srcinfo 0 : { *(.debug_srcinfo) }
 .debug_sfnames 0 : { *(.debug_sfnames) }
 /* DWARF 1.1 and DWARF 2 */
 .debug_aranges 0 : { *(.debug_aranges) }
 .debug_pubnames 0 : { *(.debug_pubnames) }
 /* DWARF 2 */
 .debug_info 0 : { *(.debug_info) }
 .debug_abbrev 0 : { *(.debug_abbrev) }
 .debug_line 0 : { *(.debug_line) }
 .debug_frame 0 : { *(.debug_frame) }
 .debug_str 0 : { *(.debug_str) }
 .debug_loc 0 : { *(.debug_loc) }
 .debug_macinfo 0 : { *(.debug_macinfo) }
}

Version 1.0.0 (October 25, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

