
Cmpware CMP-DK FastModel Page 1

Modeling Processors with the
Cmpware CMP-DK FastModel Interface

(Version 3.2 for Eclipse 3.2)

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is a
multiprocessor simulation and software development environment. It provides fast and
efficient modeling of multiprocessor architectures as well as support for software
development on such systems. The goal of supporting software development is
achieved by providing an interactive, display-rich environment that permits large
amounts of information to be displayed in a fast, simple and intuitive format. Such
capabilities are essential in analyzing the behavior of complex multiprocessor systems.

The Cmpware CMP-DK version 3.2 for Eclipse 3.2 and higher contains customizable
models for various popular processors, memories and communication links. These
models transparently interface to a powerful Eclipse-based Integrated Development
Environment (IDE) that provides a multiprocessor architecture and software
development environment. This environment features displays for:

One of the most useful features of the Cmpware CMP-DK is the ability to extend its
functionality. The existing Cmpware CMP-DK can be added to and modified in a variety
of ways. New processor models may be added, new multiprocessor models
constructed with arbitrarily complex mixes of processors and interconnection networks,
and new displays may be added for specific applications. Unlike many other systems,
these enhancements and modifications do not require access to the system source
code. In particular the modeling of processors has been simplified and the

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

 Source Code Tracing
 Source Code Variables
 Disassembly
 Memory Display
 Power Estimator
 Profiling

 General Purpose Registers
 Special Purpose Registers
 Command Line Interface
 Link Utilization
 Image display

Cmpware CMP-DK FastModel Page 2

performance increased by as much as 800% by the new FastModel interface. This
document describes the FastModel for modeling processors in the Cmpware CMP-DK.

Modeling Processors in the Cmpware CMP-DK

The Cmpware CMP-DK is used to model multiple processors communicating across
shared memory or direct communication channels. In general, the processors are
standard microprocessor cores such as MIPS32, Sparc-8 and others. The underlying
power of the Cmpware CMP-DK is that while each processor can execute a different
instruction set, they all share a common interface. This permits the processors to be
manipulated in a standard fashion and permits uniform display of data even across
heterogeneous multiprocessor systems.

The original modeling environment for the Cmpware CMP-DK is based on a simple but
flexible interface. It defines five functions (methods) which must be implemented by the
model builder to provide the functionality for a processor. Figure 1 shows the interface
for the Cmpware Processor class.

While this is a flexible and powerful interface, it provides little structure to the model
builder and requires that some potentially complex code be written. While the ProcGen
tool aids further in this effort, it simply provides further structure for the programmer to
'fill in the blanks'. In particular, the decode functionality can become complex in some
architectures and providing for support for more irregular structures such as variable
instruction lengths can require a more substantial effort.

The FastModel interface is a new layer of abstraction placed on top of the existing

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 1: The Cmpware CMP-DK Processor interface.

 public abstract int decode(int instr)
 throws IllegalOpcodeException;

 public abstract void execute(int instr)
 throws MemoryAccessException,

 IllegalRegisterException,
 IllegalOpcodeException;

 public abstract int getPC();
 public abstract void setPC(int pc);
 public abstract String dasm(byte instr[]);

Cmpware CMP-DK FastModel Page 3

Processor model that allows the user to supply a minimal set of code and data
describing the architecture. FastModel uses this data to produce structures such as the
decode(), dasm() and execute() methods at run-time. In general, the FastModel
interface takes basic information from a databook describing a processor architecture
and permits it to be entered in a compact and highly structured format. This data is
then used to drive the processor simulation and IDE display.

This approach results in smaller, simpler and more reliable Processor models, allowing
faster development and easier modification. And because the FastModel is a superset
of the existing Processor interface, all lower level functionality is still available to the
modeling should such functionality be required. Because the system interface to the
model remains the same, FastModel and standard Processor models may be freely
intermixed in a multiprocessor model. Complete backward compatibility with the
existing Processor model is also maintained.

Additionally, the FastModel also provides a simple stand-alone assembler and
disassembler driven by the processor model description input. There are several
reasons why this is valuable, particularly to anyone developing custom processors.

First, the testing of a new processor, even in the Cmpware CMP-DK will require some
sort of programming tool. Typically this takes the form of a simple assembler. The
development of an assembler or other programming tool can be a significant effort at
least as large, if not larger, than the architecture modeling. And because the
implementation of the assembler and other tools must necessarily be in tight
synchronization with the processor design, its development can significantly extend the
overall development time.

Secondly, the manually produced assembler will almost certainly contain programming
errors, which will further delay progress, since it is typically difficult to determine if the
error is in the simulation model or in the assembler code. Finally, as even small
changes to the architecture occur, keeping the assembler and other tools in version
synchronization can become difficult. Using outdated versions of tools is a common
problem and can further consume valuable development time.

With the FastModel approach, the model and the programming tools are generated at
the same time from the same model description. This not only provides a programming
tool suitable for use with the Cmpware CMP-DK immediately, but provides a tool which
is highly reliable and always completely in sync with the most current version of the
architecture model. Such a tool can dramatically reduce the development cycle time
and permit significant refinement of the architecture in a much shorter time than with
other approaches.

While standard processor models will often have more mature and powerful

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 4

programming tools available, including high level language compilers, the FastModel
approach to building Cmpware simulation models can significantly accelerate the
process of developing custom processors.

The FastModel Interface

The FastModel programming interface is significantly smaller than the Processor
programming interface. In fact, it contains a single function call as indicated in Figure 2.
While this interface is extremely simple, the data structures used by the interface are
more complex. One way to view the FastModel interface is as a data-driven model,
where much of the information describing the architecture to be simulated is defined in
data structures, as opposed to executable code. This provides a more rigid structure
for the processor definition and reduces the overall model development effort,
simplifying both development and debug.

The example used in this document to describe the FastModel tool is the 'Simple'
processor example used to describe the original Processor models. The Simple
processor and its model are described in the Cmpware Inc. Processor Modeling Guide
available on the Cmpware, Inc. web site.

Appendix A at the end of this document gives the full source code for the FastModel
version of the Simple processor, called FastSimple. Because the data structures are
nested, it is perhaps best to explore the data structures from the end of the file, working
backward.

Figure 3 shows the Instruction arrays used by the defineInstructions() interface.
While any technique used to produce an array of Instruction elements can be used by
the FastModel interface, this is perhaps the simplest and most manageable. An array
of new Instruction objects is allocated as a table using the standard class constructor
for the Instruction class.

Note that for demonstration purposes, two arrays are declared here. In this case the
defineInstructions() method is called twice, once for each group of instructions.
This ability to define groups of instructions is useful in complex processors that may

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 2: The Cmpware CMP-DK FastModel interface.

 public void defineInstructions(Instruction i[]);

Cmpware CMP-DK FastModel Page 5

have optional instructions that may be enabled or disabled for various similar versions
of the processor hardware.

In this constructor, three parameters which describe the instruction are passed as input
parameters. These are:

 Name: The first parameter to the Instruction class constructor is the instruction
name. This is simply a text string describing the instruction. This is typically the
mnemonic for the instruction and is used in places such as the assembler,
disassembler and other instruction displays.

 Decode: The second parameter to the Instruction class constructor is the Decode.
This defines the constants used to decode the particular instruction. In cases of a
simple one field decode as in the FastSimple processor, the statement
Decode.primary(f_opcode, 14), will suffice. Here the first parameter defines the
field (in this case the field is named f_opcode) and the second parameter defines the
value of this field in this particular instruction. More complex decoding schemes with
multiple fields are relatively simple. The secondary fields may be added in using the
add() function. An example of this syntax would be:

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 3: The FastSimple Instruction definition arrays.

/** A group of Simple processor instructions */
private final Instruction instructions[] = {
 new Instruction("add", Decoder.primary(f_opcode, 1), new ADD()),
 new Instruction("addi", Decoder.primary(f_opcode, 2), new ADDI()),
 new Instruction("sub", Decoder.primary(f_opcode, 3), new SUB()),
 new Instruction("xor", Decoder.primary(f_opcode, 4), new XOR()),
 new Instruction("not", Decoder.primary(f_opcode, 5), new NOT_()),
 new Instruction("or", Decoder.primary(f_opcode, 6), new OR()),
 new Instruction("and", Decoder.primary(f_opcode, 7), new AND()),
};
/** Another group of Simple processor instructions */
private final Instruction instructions2[] = {
 new Instruction("shl", Decoder.primary(f_opcode, 8), new SHL()),
 new Instruction("shr", Decoder.primary(f_opcode, 9), new SHR()),
 new Instruction("br", Decoder.primary(f_opcode, 10), new BR()),
 new Instruction("bnz", Decoder.primary(f_opcode, 11), new BNZ()),
 new Instruction("bz", Decoder.primary(f_opcode, 12), new BZ()),
 new Instruction("ld", Decoder.primary(f_opcode, 13), new LD()),
 new Instruction("st", Decoder.primary(f_opcode, 14), new ST())
};

Cmpware CMP-DK FastModel Page 6

 Decode.primary(f_opcode, 14).add(opcode2, 5)
Additional fields can be added by chaining additional add() methods in this same
manner.

 Function: The fourth and final field describing an Instruction is the Function. It
contains all of the code implementing the behavior of this instruction. These functions
typically make use of local variables and other data in the FastModel and are usually
very small. Each of the instructions in the FastSimple processor have a function
containing a single line of code, which is typical. The Function classes can use any
name, but this example uses the instruction name in all upper case letters.

With the instruction name, decode and function all of the information required to fully
describe the instruction has been provided. The last item in each instruction, the
function definition, represents the implementation of each instruction. This relies on
further interfaces and pre-defined data structures that simplify the task of implementing
instructions.

The first instruction defined in the Instruction array is ADD. Figure 4 gives the actual
implementation of the ADD instruction. A single function, exec(), is defined to
describe the execution of the instruction. In this case, register a is added to register b
and the result stored in register c. This functionality is typically defined in some sort of
pseudocode in processor definition documents. The implementation should usually
look very similar to the pseudocode definition in these documents.

Of course, this is not the complete instruction implementation. The class ADD is
derived from another class called RegToReg and the local variables a, b and c need to
be defined. The RegToReg class is shown in figure 5. This class defines all of the
common functionality for the register to register operations in the FastSimple processor.
Most processors typically have groups of instructions that share common decode fields
and have somewhat similar functionality. While not required, making use of this

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 4: The FastSimple ADD instruction.

 /** The ADD instruction */
 public class ADD extends RegToReg {
 public void exec(long addr) {
 r[c] = r[a] + r[b];
 } /* end exec() */
 } /* end class ADD */

Cmpware CMP-DK FastModel Page 7

grouping of instructions will help keep the FastModel code simple and easy to
implement and debug.

The functionality in the RegToReg class is relatively simple, but very important. There
are four methods in this class and three local variables. These provide the following
functionality:

 getFormat(): This method is optional and supplies information on the instruction
format and is used only by the assembler. If you have no need for the FastModel
assembler, then this method can be ignored. If it is implemented, an array of Field
definitions is returned. These fields represent all of the non-decode fields used in the

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 5: The FastSimple RegToReg instruction group class.

 /**
 ** The Register to Resister instruction type
 */

 public abstract class RegToReg extends Function {
 public Field[] getFormat() {
 return (new Field[]{f_c, f_a, f_b});
 } /* end getFields() */

 public int getSize() {return (16);}
 public void extractFields(BigInteger instr) {
 a = (int) f_a.get(instr);
 b = (int) f_b.get(instr);
 c = (int) f_c.get(instr);
 } /* end extractFields() */

 public String toString() {
 return ("r"+c+", r"+a+", r"+b);
 } /* end toString() */
 /** The 'a' field */
 protected int a;

 /** The 'b' field */
 protected int b;

 /** The 'c' field */
 protected int c;
 } /* end class RegToReg */

Cmpware CMP-DK FastModel Page 8

assembly language for the instruction. These fields should be in the same order as the
assembly language and should have a one to one correspondence to the text fields in
the assembly language definition for the instruction. The Field data structures will be
discussed in more detail below.

 getSize(): This method simply returns the number of bits in the instruction. This
method typically returns a constant integer value.

 extractFields(): This method is used to take the binary representation of the
instruction and break it into pieces that can be more easily used by the exec()
method. It is highly recommended that this method make use of locally defined values.
This method both simplifies the final exec() operation and helps accelerate execution.
In general, this method should always look very much like the one in this example.
Field data structures are used to split the instruction into pieces and saved in the local
variables.

 toString(): Finally, the toString() method is a typical Java method used to
output a string representation of a class. In this case, the disassembly of the instruction
is returned. Note that this disassembly only contains the parameters to the instruction,
since the instruction name, or mnemonic, is not defined at this point. This method,
along with the instruction mnemonic, are used to produce the complete instruction
disassembly. While this method is not crucial to the operation of the simulator, it is very
useful and care should be taken to implement it correctly. Additionally, it is
recommended that this method be kept simple and use primarily the local variables.

While the RegToReg class defines the register to register instruction, other similar
classes are used to define other groups of instructions. In the FastSimple processor,
these instruction groups are defined by the classes Immediate, Unary, Branch,
BranchImmediate and LoadStore. This is a relatively large number of groups for such a
simple processor with a small number of instructions. Other processors will typically
have many instructions in a group.

The final element of the FastModel is the Field definitions. These are used to define
the various bit fields in the processor instruction word. These are typically shared and
may be declared globally to the FastModel class as in Figure 6. These six fields are all
of the fields used in the processor definition. They are used in various combinations in
the individual instructions.

The Field class constructor takes two parameters, the field width and the start bit of the
field. A third optional parameter is a symbol table used by the FastModel built-in
assembler. If your processor already has tools available and will not be using the
assembler feature, these symbol tables are not necessary.

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 9

In the FastSimple processor fields, a symbol table is used to translate register names to
the binary values used in the instruction word.

Figure 7 shows the regSymbols symbol table used in the FastSimple processor. This
maps the register name strings to the appropriate integer value used in the instruction.
Note that the Symbol constructor takes two parameters, a string and its corresponding
integer value. Again, these tables may be implemented in a variety of ways, but this
approach is the most common. Also note that more than one string may be given per
integer value. This will permit different 'alias' values of a register to be used in the
assembler. For instance, the first special register may be referred to as the Program
Counter ('pc') or simply as Special Register Zero ('sr0').

While this describes all of the basic data structures and code to produce a working
FastModel of a processor, there is some additional support available to enhance the
flexibility of the model and to make the coding simpler. Some of this additional support

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 6: The FastSimple Instruction fields.

 /* The Simple instruction set decode fields */
 private final static Field f_opcode = new Field(4, 12);
 private final static Field f_c = new Field(4, 8, regSymbols);
 private final static Field f_a = new Field(4, 4, regSymbols);
 private final static Field f_b = new Field(4, 0, regSymbols);
 private final static Field f_imm8 = new Field(8, 0);
 private final static Field f_imm12 = new Field(12, 0);

Figure 7: The FastSimple register symbol table.

 /** The Registers Names / Assembler Symbols */
 private final static Symbol regSymbols[] = {
 new Symbol("r0", 0), new Symbol("r1", 1),
 new Symbol("r2", 2), new Symbol("r3", 3),
 new Symbol("r4", 4), new Symbol("r5", 5),
 new Symbol("r6", 6), new Symbol("r7", 7),
 new Symbol("r8", 8), new Symbol("r9", 9),
 new Symbol("r10", 10), new Symbol("r11", 11),
 new Symbol("r12", 12), new Symbol("r13", 13),
 new Symbol("r14", 14), new Symbol("r15", 15)
 };

Cmpware CMP-DK FastModel Page 10

is in the form of available Application Program Interface (API) functions that can be
overridden and used in a variety of ways. These are all documented in the on-line Java
package documentation for the FastModel classes, but some of the more useful
extensions and techniques are discussed briefly in the following section.

Additional Support in the FastModel Interface

The basic FastModel programming interface is sufficient for producing a simulation
model and associated stand-alone assembler and disassembler tools. Note that while
the FastModel interface replaces much of the older Processor interface, much of that
interface is still exposed and may still be used. While the use of this interface is largely
optional, some methods should be used in most processor definitions. The
FastSimple constructor shown in Appendix A makes several calls to this interface to
define the register sets and to resize the memory. This constructor is typical and similar
definitions should be used in all FastModel processor models.

Finally, some methods in the Processor model may be overridden just as in normal
Processor models. setPC() and getPC() are two candidates for methods from the
Processor interface that may be overloaded and redefined. The default value in
FastModel sets the Program Counter to Special Register zero (sr[0]). If this is not
correct, then these methods should be overridden.

It should be noted that the overriding of internal methods in the Cmpware API is a
powerful technique, and care should be taken to completely understand the effect of
specifying these methods. In particular, the FastModel approach hides this lower level
interface in order to provide a simpler processor specification. Mixing FastModel and
Processor methods should only be attempted after a thorough understanding of the
function and interaction of these components. If such low-level control is required, it is
possible that the FastModel approach is not suitable for a particular implementation.
Consider using the lower level Processor model directly in such cases.

The FastModel Assembler and Disassembler Interface

An additional benefit of the FastModel programming interface is that a simple set of
programming tools in the form of a stand alone assembler and disassembler is
generated automatically. In fact, these tools are a part of the FastModel processor
model and do not even exist as separate files. This ensures that the simulation model
and its tools are properly in sync and that the correct version of the tools are being used
with the correct version of the simulation model. This can be very valuable in
environments where the architecture or the instruction set of the processor is under
development and is changing rapidly.
In the example of the FastSimple processor, an assembly language syntax is implicitly

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 11

defined by the definition of the Fields in the getFormat() methods and by the addition
of symbol tables to selected Fields. Figure 8 shows a very simple assembly language
program for the FastSimple processor. It adds a constant value to register r3, a zero to
r0 and branches back to the beginning of the program at address zero.

This example also demonstrates two additional features of the built in assembler. First,
comments are indicated by the "//" character pair. Other comment markers are the
double dash ("--") and the semicolon character (";") Any characters in a line following
these comment markers are ignored by the FastModel assembler.

The second feature is the constant definition indicated by the #define statement.
This is not a general purpose macro facility as in higher level languages, but simply a
text string substitution. This permits constants and variables to be defined using more
meaningful names. In this example, the increment value is indicated by the text string
"incr" and is set to a value of "2".

The assembler command in Figure 9 produces a binary file named Test.out that
contains the result of the assembly. This file is a 'raw' binary and contains only the
assembled code in binary form. This file may be disassembled using the stand alone
disassembler created in the FastModel for the FastSimple processor. Figure 10 shows

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 8: A small assembly language program for the FastSimple processor.

// This tests the Simple processor assember.
#define incr 2
addi r3, incr
addi r0, 0
br 0

Figure 9: Assembling an assembly language program for the FastSimple processor.

C:\Cmpware> java com.cmpware.cmp.models.FastSimple -asm Test.asm Test.out
2302 --> addi r3, incr
2000 --> addi r0, 0
A000 --> br 0
3 instructions processed. (1 #define / 3 comment / 3 blank lines).
C:\Cmpware>

Cmpware CMP-DK FastModel Page 12

the disassembler running on this output file.

Note that the output should be the same as the input to the assembler. This
disassembler, in addition to being a simple stand alone tool has other uses. It may be
used to help test and verify the model and to be sure that the instruction decode portion
of the simulation model is operating correctly. Since this is typically the most error-
prone and most difficult part of the model to debug, it is useful to have independent
methods of verifying the correctness of this code.

Finally, this stand alone disassembler uses the same code used in the Cmpware CMP-
DK user interface. If some changes to the disassembly format need to be made, the
FastModel disassembler gives a simple way to test this portion of the system.

One final note on the FastModel assembler / disassembler tools. It is useful to run
these at some point after model development just to do some further verification on the
models. In particular, the instruction decode functionality is tested in these modules for
consistency. If two instructions specified in the model use the same decode values, the
assembler and disassembler will produce a warning message.

This can be very useful when developing FastModel models of processors. The typing

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 10: Disassembling a binary file for the FastSimple processor.

C:\Cmpware> java com.cmpware.cmp.models.FastSimple -dasm Test.out
2302 addi r3, 2
2000 addi r0, 0
A000 br 0
 (3 instructions disassembled).
C:\Cmpware>

Figure 11: A duplicate opcode error inserted into the FastSimple model.

 ...
 new Instruction("bz", branch, Decode.primary(opcode, 12), new BZ()),
 new Instruction("ld", loadStore, Decode.primary(opcode, 13), new LD()),
 new Instruction("st", loadStore, Decode.primary(opcode, 13), new ST())
};
 ...

Cmpware CMP-DK FastModel Page 13

in of the decode values can be tedious and typographical errors can easily go
unnoticed. Such errors can be difficult to find in the final simulation model running
under the Cmpware CMP-DK environment.

As an example, the instruction opcode for the st operation is changed from the value
of 14 to the value 13. This causes a decode collision with the ld instruction. If this
change is made as in Figure 11, a warning message as indicated in Figure 12 is
displayed. Note that no such warning message will be produced by the Cmpware
CMP-DK environment. This is only a feature in the stand-alone assembler and
disassembler tools.

Using the FastSimple Processor

Once the FastSimple processor has been compiled, it can immediately be used in the
Cmpware CMP-DK. Since this demonstration processor is included with the other
models in the Cmpware CMP-DK library, it can be used just like any other standard
processor. By selecting the Cmpware preferences from the Windows -->
Preferences ... menu, the Processors field can be changed to, in this case, a 4 x 4
array of FastSimple processors as shown in Figure 13.

Pressing the [OK] button in the Preferences window allocates the new array and
produces the display as shown in Figure 14. Selecting the Registers tab on the left
verifies that the number of registers and their names are the same as the ones given in
the model.

At his point, the reset() code in the model has loaded the first few addresses in
memory with some simple instructions, in particular two immediate additions and a loop
back to address zero. See the reset() code in Appendix A for more details on this

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 12: The FastSimple disassembler warning message from a duplicate opcode
error in the model.

C:\Cmpware> java com.cmpware.tools.AutoSimple -dasm Test.out
Warning: Instruction 'ld' has the same decode as instruction 'st'.
2302 addi r3, 2
2000 addi r0, 0
A000 br 0
 (3 instructions disassembled).
C:\Cmpware>

Cmpware CMP-DK FastModel Page 14

piece of embedded executable code. Note that including such executable code after a
reset can help to speed up development of processor models. This operates much like
the Read Only Memory (ROM) typically used to help boot up most computing systems.
In practical terms, it also saves the additional step of manually loading code using the
Load All () or Load () buttons.

Pressing the Step button () will step the multiprocessor simulation through a
simulation cycle. Repeated pressing of the Step button will continue to single step the
simulation. The code in this example will increment registers and loop infinitely. In this
example, each FastSimple core operates independently; there is no communication or
other interaction between the processor cores. But this will still allow some verification
that the model is operating correctly.

Figure 15 shows the Cmpware IDE after the Disassemble tab has been selected. This
switches the main display from the multiprocessor array to a display of the disassembly
of memory for the selected processor. As expected, the code defined in the model

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 13: Creating a 4 x 4 array of FastSimple processors.

Cmpware CMP-DK FastModel Page 15

reset() method can be seen in the disassembly of the first few words of memory.

In Figure 15, a single step cycle has been performed and the first instruction has been
executed. As expected from the code in the disassembly, the value in register 10 (r10)
has been incremented by ten. This is further confirmation that the model is functioning
correctly. While it is likely that there will be some errors (bugs) in custom models, the
structures and displays in the Cmpware CMP-DK make these problems easy to identify
and isolate.

It should also be noted that the Disassembly display in Figure 15 is produced directly by
the FastSimple simulation model. In previous versions of the Cmpware CMP-DK, this
disassembly had to be implemented manually and was a potential source of
disagreement between what the display indicated and the function the actual binary
code. The FastModel approach eliminates this gap, producing not only more reliable
and robust simulation models, but also smaller models with less code.

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 14: Creating a 4 x 4 array of FastSimple processors.

Cmpware CMP-DK FastModel Page 16

Lastly, it should be mentioned that the disassembly shows the third and fourth
instructions as a 'nop'. This 'no-operation' value is set in the FastSimple constructor
using the defineNoop() method. The model defines the instruction 'addi r0, 0'
to indicate a 'nop', and this is the instruction that the disassembler in the IDE displays
as the default nop operation. This 'nop' indicator is only a display convenience, since
many other instructions could just as easily been used to produce the 'nop'
functionality.

Conclusions

The FastModel package in the Cmpware CMP-DK permits users to quickly and easily
define and modify processor models. FastModel provides a simple, yet flexible
framework to provide all of the information necessary to define an instruction set
processor. Once this description is provided, FastModel makes use of this information
in a variety of ways.

While the ability to produce the simulation model that interfaces directly to the

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Figure 15: Execution of code in the FastModel processors.

Cmpware CMP-DK FastModel Page 17

Cmpware CMP-DK IDE is the primary goal, the FastModel approach also produces
both an assembler and disassembler for the processor. This has several advantages.

First, the effort required to produce these tools is eliminated. Second, these tools are
part of the model itself, and in fact all share the same Java class file. This guarantees
that the tools will always be in sync with the models. This can be very important in
environments where the design in changing rapidly. Finally, the use of the same data
to perform simulation, assembly and disassembly provides the opportunity to do a
variety of 'sanity' checking, thus greatly reducing the model debug burden.

FastModel represents a significant new feature in the 3.2 release and is recommended
for all future processor modeling in the Cmpware CMP-DK.

For more information on the Cmpware CMP-DK see our web site at:

http://www.cmpware.com/

or send an email to:

info@cmpware.com

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 18

Appendix A: FastSimple.java Source Code

package com.cmpware.cmp.models;
import com.cmpware.cmp.MemoryAccessException;
import com.cmpware.cmp.Util;
import com.cmpware.fastmodel.Instruction;
import com.cmpware.fastmodel.Symbol;
import com.cmpware.fastmodel.Decoder;
import com.cmpware.fastmodel.Field;
import com.cmpware.fastmodel.Function;
import com.cmpware.fastmodel.FastModel;
import java.math.BigInteger;

/**
** This is the 'Simple' processor produced using the
** FastModel data-driven interface. Note that this
** model relies on the use of local (as opposed to global)
** data in the exec() methods. The exec() method may
** reference globlal data such as registers, but all
** fields extracted from the instruction word must be local
** to the Instruction class.
**
** <p>
** Copyright (c) 2008 Cmpware, Inc. All Rights Reserved.
** <p>
**
** @author SAG
*/

public class FastSimple extends FastModel {

/** Copyright string */
public final static String copyright =
 "Copyright (c) 2008 Cmpware, Inc. All Rights Reserved.";

/**
** This main() method is optional and enables the
** stand-alone assembler and disassembler. The
** command line should be either:
**
** java com.cmpware.cmp.models.FastSimple -dasm <infile>
** or
** java com.cmpware.cmp.models.FastSimple -asm <infile> <outfile>
*

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 19

** @param args the command line arguments.
**
*/

public static void main(String[] args) {
 FastModel.main(new FastSimple(), args);
 } /* end main() */

/**
** The constructor
*/

public FastSimple() {

 try {

 String sregNames[] = {"pc"};
 String regNames[];
 /* Define the instructions first */
 defineInstructions(instructions);
 defineInstructions(instructions2);
 /* Get some string tables from the instruction data */
 regNames = getSymbolNames(regSymbols);
 /* Some good defaults */
 defineName("FastSimple");
 defineInstructionSize(2);
 defineRegisters(16);
 defineSpecialRegisters(1);
 defineBranchDelay(0);
 defineRegisterNames(regNames);
 defineSpecialRegisterNames(sregNames);
 defineNoop(NOOP_INSTRUCTION);
 /* Resize the memory */
 getLocalMemory().resize(1024);
 getLocalMemory().setEndian(BIG);
 /* Reset the processor */
 reset();

 } catch (Exception e) {
 e.printStackTrace();
 } /* end try{} */
 } /* end FastSimple() */

/**
** This method resets the processor. Note that
** super.reset() must me called to completely intialize

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 20

** the processor.
**
*/

public void reset() {
 /* Always call Processor.reset() first */
 super.reset();
 /* Write the test code to address 0 */
 byte testCode[] = {
 (byte) 0x23, (byte) 0x0a, // ADDI r3, 10
 (byte) 0x25, (byte) 0x04, // ADDI r5, 4
 (byte) 0xa0, (byte) 0x00, // BR 0
 (byte) 0x20, (byte) 0x00, // NOOP
 (byte) 0x20, (byte) 0x00 // NOOP
 };

 try {
 write(0, testCode);
 } catch (MemoryAccessException mae) {
 System.out.println("Warning: Could not load test code.");
 }
 } /* end reset() */

/** The Registers Names / Assembler Symbols */
private final static Symbol regSymbols[] = {
 new Symbol("r0", 0), new Symbol("r1", 1),
 new Symbol("r2", 2), new Symbol("r3", 3),
 new Symbol("r4", 4), new Symbol("r5", 5),
 new Symbol("r6", 6), new Symbol("r7", 7),
 new Symbol("r8", 8), new Symbol("r9", 9),
 new Symbol("r10", 10), new Symbol("r11", 11),
 new Symbol("r12", 12), new Symbol("r13", 13),
 new Symbol("r14", 14), new Symbol("r15", 15)
 };

/* The Simple instruction set decode fields */
private final static Field f_opcode = new Field(4, 12);
private final static Field f_c = new Field(4, 8, regSymbols);
private final static Field f_a = new Field(4, 4, regSymbols);
private final static Field f_b = new Field(4, 0, regSymbols);
private final static Field f_imm8 = new Field(8, 0);
private final static Field f_imm12 = new Field(12, 0);

/** The NOOP instruction */
private final static byte NOOP_INSTRUCTION[] =
 {(byte) 0x20, (byte) 0x00};

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 21

/**
** The Register to Resister instruction type
*/

public abstract class RegToReg extends Function {
 public Field[] getFormat() {
 return (new Field[]{f_c, f_a, f_b});
 } /* end getFields() */

 public int getSize() {return (16);}
 public void extractFields(BigInteger instr) {
 a = (int) f_a.get(instr);
 b = (int) f_b.get(instr);
 c = (int) f_c.get(instr);
 } /* end extractFields() */

 public String toString() {
 return ("r"+c+", r"+a+", r"+b);
 } /* end toString() */
 /** The 'a' field */
 protected int a;

 /** The 'b' field */
 protected int b;

 /** The 'c' field */
 protected int c;
 } /* end class RegToReg */

/**
** The Immediate instruction type
*/

public abstract class Immediate extends Function {
 public Field[] getFormat() {
 return (new Field[]{f_c, f_imm8});
 } /* end getFields() */

 public int getSize() {return (16);}
 public void extractFields(BigInteger instr) {
 int tmp;
 tmp = (int) f_imm8.get(instr);
 simm8 = Util.signExtend(tmp, 8);
 c = (int) f_c.get(instr);
 } /* end extractFields() */

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 22

 public String toString() {
 return ("r"+c+", "+simm8);
 } /* end toString() */
 /** The signed 8-bit immediate value */
 protected int simm8;
 /** The 'c' field */
 protected int c;
 } /* end class Immediate */

/**
** The Unary instruction type
*/

public abstract class Unary extends Function {
 public Field[] getFormat() {
 return (new Field[]{f_c, f_b});
 } /* end getFields() */

 public int getSize() {return (16);}
 public void extractFields(BigInteger instr) {
 b = (int) f_b.get(instr);
 c = (int) f_c.get(instr);
 } /* end extractFields() */

 public String toString() {
 return ("r"+c+", r"+b);
 } /* end toString() */
 /** The 'b' field */
 protected int b;
 /** The 'c' field */
 protected int c;
 } /* end class Unary */

/**
** The Branch instruction type
*/

public abstract class Branch extends Function {
 public Field[] getFormat() {
 return (new Field[]{f_a, f_b});
 } /* end getFields() */

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 23

 public int getSize() {return (16);}
 public void extractFields(BigInteger instr) {
 a = (int) f_a.get(instr);
 b = (int) f_b.get(instr);
 } /* end extractFields() */

 public String toString() {
 return ("r"+a+", r"+b);
 } /* end toString() */
 /** The 'a' field */
 protected int a;

 /** The 'b' field */
 protected int b;

 } /* end class Branch */

/**
** The Branch Immediate instruction type
*/

public abstract class BranchImm extends Function {
 public Field[] getFormat() {
 return (new Field[]{f_imm12});
 } /* end getFields() */

 public int getSize() {return (16);}
 public void extractFields(BigInteger instr) {
 int tmp;
 tmp = (int) f_imm12.get(instr);
 simm12 = Util.signExtend(tmp, 12);
 } /* end extractFields() */

 public String toString() {
 return (""+simm12);
 } /* end toString() */
 /** The signed 12-bit immediate value */
 protected int simm12;
 } /* end class BranchImm */

/**
** The Load Store instruction type
*/

public abstract class LoadStore extends Function {

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 24

 public Field[] getFormat() {
 return (new Field[]{f_c, f_b});
 } /* end getFields() */

 public int getSize() {return (16);}
 public void extractFields(BigInteger instr) {
 b = (int) f_b.get(instr);
 c = (int) f_c.get(instr);
 } /* end extractFields() */

 public String toString() {
 return ("r"+c+", r"+b);
 } /* end toString() */
 /** The 'b' field */
 protected int b;

 /** The 'c' field */
 protected int c;

 } /* end class LoadStore */

/*
** The Instruction Functions
*/
/** The ADD instruction */
public class ADD extends RegToReg {
 public void exec(long addr) {
 r[c] = r[a] + r[b];
 } /* end exec() */
} /* end class ADD */
/** The ADDI instruction */
public class ADDI extends Immediate {
 public void exec(long addr) {
 r[c] = r[c] + simm8;
 } /* end exec() */
} /* end class ADDI */
/** The NOT_ instruction */
public class NOT_ extends Unary {
 public void exec(long addr) {
 r[c] = ~r[b];
 } /* end exec() */
} /* end class NOT_ */
/** The SUB instruction */
public class SUB extends RegToReg {
 public void exec(long addr) {
 r[c] = r[a] - r[b];

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 25

 } /* end exec() */
} /* end class SUB */
/** The XOR instruction */
public class XOR extends RegToReg {
 public void exec(long addr) {
 r[c] = r[a] ^ r[b];
 } /* end exec() */
} /* end class XOR */
/** The OR instruction */
public class OR extends RegToReg {
 public void exec(long addr) {
 r[c] = r[a] | r[b];
 } /* end exec() */
} /* end class OR */
/** The AND instruction */
public class AND extends RegToReg {
 public void exec(long addr) {
 r[c] = r[a] & r[b];
 } /* end exec() */
} /* end class AND */
/** The SHL instruction */
public class SHL extends RegToReg {
 public void exec(long addr) {
 r[c] = r[a] << r[b];
 } /* end exec() */
} /* end class SHL */
/** The SHR instruction */
public class SHR extends RegToReg {
 public void exec(long addr) {
 r[c] = r[a] >> r[b];
 } /* end exec() */
} /* end class SHR */
/** The BR instruction */
public class BR extends BranchImm {
 public void exec(long addr) {
 branch(simm12);
 } /* end exec() */
} /* end class BR */
/** The BNZ instruction */
public class BNZ extends Branch {
 public void exec(long addr) {
 if (r[a] != 0) branch(r[b]);
 } /* end exec() */
} /* end class BNZ */
/** The BZ instruction */
public class BZ extends Branch {

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

Cmpware CMP-DK FastModel Page 26

 public void exec(long addr) {
 if (r[a] == 0) branch(r[b]);
 } /* end exec() */
} /* end class BZ */
/** The LD instruction */
public class LD extends LoadStore {
 public void exec(long addr) throws MemoryAccessException {
 r[c] = read32(r[b]);
 } /* end exec() */
} /* end class LD */
/** The ST instruction */
public class ST extends LoadStore {
 public void exec(long addr) throws MemoryAccessException {
 write32(r[c], r[b]);
 } /* end exec() */
} /* end class ST */

/** A group of Simple processor instructions */
private final Instruction instructions[] = {
 new Instruction("add", Decoder.primary(f_opcode, 1), new ADD()),
 new Instruction("addi", Decoder.primary(f_opcode, 2), new ADDI()),
 new Instruction("sub", Decoder.primary(f_opcode, 3), new SUB()),
 new Instruction("xor", Decoder.primary(f_opcode, 4), new XOR()),
 new Instruction("not", Decoder.primary(f_opcode, 5), new NOT_()),
 new Instruction("or", Decoder.primary(f_opcode, 6), new OR()),
 new Instruction("and", Decoder.primary(f_opcode, 7), new AND()),
};
/** Another group of Simple processor instructions */
private final Instruction instructions2[] = {
 new Instruction("shl", Decoder.primary(f_opcode, 8), new SHL()),
 new Instruction("shr", Decoder.primary(f_opcode, 9), new SHR()),
 new Instruction("br", Decoder.primary(f_opcode, 10), new BR()),
 new Instruction("bnz", Decoder.primary(f_opcode, 11), new BNZ()),
 new Instruction("bz", Decoder.primary(f_opcode, 12), new BZ()),
 new Instruction("ld", Decoder.primary(f_opcode, 13), new LD()),
 new Instruction("st", Decoder.primary(f_opcode, 14), new ST())
};
} /* end class FastSimple */

Version 1.0.0 (May 14, 2008)
Copyright © 2004-2008 Cmpware, Inc. All rights reserved.

