
Modeling Heterogeneous Multiprocessors Page 1

Modeling Heterogeneous Multiprocessors
with the Cmpware CMP-DK

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is based
around fast simulation models for multiple processors. The goal of this toolkit is to
provide support across a wide variety of multiprocessing platforms. While many
multiprocessors may opt for a single type of processor, many may include a mix of
processing elements of various types. These multiprocessors containing more than
one type of processing node are typically referred to as heterogeneous multiprocessors.

Heterogeneous multiprocessors increase the complexity of a multiprocessor system by
requiring that more than one type of processing node be designed. Also significantly,
each node type will require a set of tools including a simulation model. Such systems
tend to require highly specialized software support and have typically required fully
custom software solutions. In spite of their increased hardware and software
complexity, heterogeneous multiprocessors can provide dramatically higher levels of
performance often while simultaneously lowering overall power consumption.
Depending on the requirements of the system, the added complexity of a
heterogeneous system may be worth the additional effort.

While heterogeneous multiprocessors provide a software tools challenge, this is an
area where the Cmpware CMP-DK excels. Because the Cmpware models are built with
a standard interface used to interact with other models, heterogeneous multiprocessors
present no particular modeling problem. This document describes the process used to
build a heterogeneous multiprocessor consisting of two different types of processing
nodes. In this example, existing models for a MIPS32 processor and an Sparc8 will be
used.

Of course, other processor configurations, including custom processors and hard wired
logic can be modeled using these same techniques. This processor arrangement is
chosen primarily for simplicity. The same techniques can be used for arbitrarily large
and diverse heterogeneous multiprocessors.

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Modeling Heterogeneous Multiprocessors Page 2

Defining the Multiprocessor

This entire example is performed on a Dell Precision 340 PC running Debian Linux
version 3.1, Eclipse 3.1 and the Cmpware CMP-DK version 1.3.6. The results should
be the same for other similar configurations.

When the Cmpware CMP-DK is loaded, the default configuration, as shown in Figure 1,
is a 2 x 2 array of Altera NIOS2 processors. To change this default, the Cmpware
Preferences Page must be brought up. The Preferences Page contains various entries
used to configure the Cmpware CMP-DK. Most prominently, this is where the
multiprocessor is defined.

The Cmpware Preferences Page is brought up by selecting the menu items Windows
--> Preferences and selecting the Cmpware list item. This brings up the dialog box as

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure1: The Cmpware CMP-DK default screen.

Modeling Heterogeneous Multiprocessors Page 3

shown in Figure 2.

The defaults on this page indicate that the processor array is made up of a
homogeneous 2 x 2 array of Altera NIOS2 processors as modeled by the class
com.cmpware.cmp.models.NIOS2. The suffix ":2:2" indicates that the array has
two rows and two columnsof processing nodes, respectively. Similarly, the Network
field indicates that the default network interconnection is a Torus as defined by the
com.cmpware.cmp.networks.Torus network model. This Torus model uses the
Shared Register link as defined in the
com.cmpware.cmp.networks.SharedRegister link model. These three fields
are used to define the three classes which in turn define the multiprocessor model.
While the default Processor description defines a homogeneous array heterogeneous

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 2: The default Cmpware preferences.

Modeling Heterogeneous Multiprocessors Page 4

arrays are also possible. These are described by using a class of the type
CustomArray in place of the single Processor model. The CustomArray class is
very simple, and defines a single method which returns a 2D array of strings. These
strings give the fully qualified name for the Processor classes which make up the
array. The array indicies correspond directly to the coordinates of the processor in the
multiprocessor array. That is, the string at element [0][0] names the Processor
class corresponding to the processor at (0,0) in the multiprocessor array.

To create this class, a standard Java source code file must be typed in and compiled,
then the resulting class file used by the Preferences page. This can be done with any
Java compiler, but it can most easily be done within the same Eclipse IDE used by the
Cmpware CMP-DK.

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 3: The Java Build Path.

Modeling Heterogeneous Multiprocessors Page 5

First, make a new Java project by selecting the menu items File --> New --> Project...
This will bring up a dialog box with a list of choices. Select Java Project and select the
[Next -->] button. Type in a Project Name of HeteroArray, and select the [Next -->]
button. Select any other defaults offered, and a new Java project should be ready.

Next we must make the existing Cmpware classes visible in this new project. This is
done by selecting the Project --> Properties menu items, and selecting the Java
Build Path item in the list brought up by the menu commands. If it is not already
selected, select the Libraries tab and select the [Add External JARs ...] button. This
brings up a file dialog box. Use this to select the Cmpware.jar file from the Eclipse
plugin directory as shown in Figure 3. In this case, the file is in the:
/home/eclipse/plugins/com.cmpware.ide_1.3.6 directory, but this will vary from system

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 4: The new Java Class creation dialog.

Modeling Heterogeneous Multiprocessors Page 6

to system.

At this point, the new Java project is initialized and all of the Cmpware classes required
to build models are properly referenced. Now a new class file can be entered and
compiled. Make a new class file by selecting the menu items File --> New ... and select
the Class menu item in the dialog box brought up by the menu. This brings up the
dialog box as shown in Figure 4. The class name should be filled in with the name of
the class, in this case, HeteroTest. The package should be the same as the other
models, or com.cmpware.cmp.models. Finally, the superclass
com.cmpware.cmp.CustomArray should be specified. The other values can remain
at their defaults.

This produces a new Java source file skeleton suitable for editing. Even the
getProcessorTable() method, as required by the superclass, is provided. All that
is required now is to fill in the array values and compile the Java source code file into a

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 5: The new Java Custom Array model.

Modeling Heterogeneous Multiprocessors Page 7

compiled Java class file. Figure 5 shows the completed source code file,
HeteroTest.java. This file is also reproduced in Appendix A. Once the source code has
been completed, the menu items Project --> Build All should produce the class file.

This file defines a custom 3 x 3 array of processors. In this case there are just two
different types of processors, a Sparc and a MIPS32. These are put in a checkerboard
pattern, which is intended to make it easy to verify that the configuration produces the
desired result.

Simulating the Multiprocessor Model

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 6: The Cmpware Preference for the HeteroTest.

Modeling Heterogeneous Multiprocessors Page 8

Once the HeteroTest class file has been compiled, it can be used to build a
multiprocessor model in the Cmpware CMP-DK. First, the Java development Eclipse
'perspective' must exited and the Cmpware perspective opened. This is done with the
menu commands Window --> Open perspective --> Other ...

This brings up a menu of the available installed perspectives in the current Eclipse
installation. One should be the Cmpware perspective. Select this item and then select
the [Ok] button. This should being up the standard Cmpware set of windows as in
Figure 1. If the Cmpware perspective has previously been in use, it may not come up
with the default windows, but with the previous window configuration from the last time
the Cmpware CMP-DK toolkit was used.

From the Cmpware perspective, the Cmpware Preference Page can be used to
instantiate this new multiprocessor configuration described in HeteroTest. To do this,

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 7: The HeteroTest Sparc / MIPS array.

Modeling Heterogeneous Multiprocessors Page 9

first, select the Cmpware Preferences Page via the Windows --> Preferences ... menu
item. This will bring up the dialog box in Figure 2. The fields in this dialog box will have
default values, or the last values set if the default values have been changed.

To configure the model as the 3 x 3 mixed Sparc and MIPS array defined in
HeteroTest, two of the fields must be changed. First, the Processor definition should be
changed to the full class name of the HeteroTest Java class. In this case, the class
name com.cmpware.cmp.models.HeteroTest should be entered in the Processor
field. The default Network and Link fields should work, producing a Torus network
connected by Shared Register links.

The final change is the bottom field, the Model Path. This is used to tell the system that
there is an alternate location of simulation models. In this case, the the path is under a
user home directory. This directory should be the one containing the 'com' directory
leading to the compiled Java class files.

Selecting the [Apply] or the [Ok] button will cause a new multiprocessor model to be
loaded and initialized. Even for relatively large systems, this should take on the order of
a second. As Figure 7 indicates, a 3 x 3 array of Sparc and MIPS processors in a
check board pattern is indeed allocated and initialized. Clicking on the processors and
viewing the various windows associated with the processors will verify that the
processors are indeed Sparc and MIPS models.

At this point, it should be mentioned that this demonstrates one of the strong points of
the Cmpware CMP-DK. When a processor is selected, all of the displays update and
present information about the selected processor. Note that when, for instance, a
Sparc processor is selected and the Special Registers window viewed, the special
registers will be specific to the Sparc processor. Similarly, the Disassembly window will
display Sparc disassembly. This permits a variety of processors to be examined with a
standard set of views. The Cmpware CMP-DK takes care of presenting the data in the
proper form.

Conclusions

This document describes the configuration of a heterogeneous multiprocessor model in
the Cmpware CMP-DK. All that is required is that a small Java file describing the array
be entered and compiled. This file is then used to configure the processor array. An
arbitrarily large number and type of processing elements is supported by the approach.
Once the heterogeneous array is instantiated, standard interactions via the Cmpware
CMP-DK interface is provided. Note that while the devices within the multiprocessor
array may vary, the Cmpware CMP-DK supports them uniformly. Each processor can

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Modeling Heterogeneous Multiprocessors Page 10

be selected and will drive the various displays in the system. Similarly, instructions and
data may be loaded into the processors and execution controlled just as with
homogeneous processors.

Troubleshooting

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is based on the
Eclipse IDE. While Eclipse is a very popular, some versions may occasionally exhibit
unstable behavior. These recommendations are general advice and apply to all
Eclipse plugins, not just the Cmpware CMP-DK.

The first thing to try if internal errors or unusual behavior occur is to simply close the
perspective with the Window --> Close Perspective menu command and re-open it. If
this does not solve the problem, closing and re-starting the Eclipse IDE will usually clear
out any buffers that may be causing these problems. Finally, re-starting Eclipse with
the "-clean" flag will purge any state data that may be cached and lingering in the
filesystem.

Such problems should be rare and these and simple commands should bring
everything back up in progressively 'cleaner' states. If none of these techniques work, a
last resort is to uninstall the offending plugin and re-install it. After uninstallation, it may
even be necessary to manually delete any remaining files in the particular plugin
directory. This should not be necessary, but could help in the situation where
executable files may be been corrupted. Finally, contact Cmpware, Inc. if problems
persist.

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Modeling Heterogeneous Multiprocessors Page 11

Appendix A - The HeteroTest.java

package com.cmpware.cmp.models;
import com.cmpware.cmp.CustomArray;

/**
** This implements a demonstration heterogeneous
** processor array.
**
** <p>
** Copyright (c) 2005 Cmpware, Inc. All Rights Reserved.
** <p>
**
** @author SAG
*/

public class HeteroTest extends CustomArray {

public String[][] getProcessorTable() {
 return (processorArray);
 } /* end getProcessorTable() */

/** A processor array description */
private static final String processorArray[][] =
{{"com.cmpware.cmp.models.Sparc", "com.cmpware.cmp.models.MIPS32",
 "com.cmpware.cmp.models.Sparc"},
 {"com.cmpware.cmp.models.MIPS32", "com.cmpware.cmp.models.Sparc",
 "com.cmpware.cmp.models.MIPS32"},
 {"com.cmpware.cmp.models.Sparc", "com.cmpware.cmp.models.MIPS32",
 "com.cmpware.cmp.models.Sparc"},
};
} /* end class HeteroTest */

Version 1.0.0 (November 14, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

