
Copyright (c) 2007 Cmpware, Inc.

An Image Processing
Demonstration Using the

Cmpware CMP-DK

Steven A. Guccione
Cmpware, Inc.

Copyright (c) 2007 Cmpware, Inc.

Multicore Image Processing
● Multicore devices increasingly used for image

and video processing
● High performance, low power and high levels

of programmability make multicore attractive
● This demo uses the Cmpware CMP-DK to:

1. Model a multicore architecture
2. Write software for this architecture
3. Execute compiled code on the model
4. View the results interactively in the IDE

Copyright (c) 2007 Cmpware, Inc.

1 1 1
1 1 1
1 1 1

Introduction: Image Morphology

X ∑

3x3 smoothing
kernel

sum

new
pixel
value

3x3 image
pixels

Copyright (c) 2007 Cmpware, Inc.

1 1 1
1 1 1
1 1 1

Other Morphology Kernels

Smoothing

-1 -1 -1
-1 8 -1
-1 -1 -1

Laplacian I

0 -1 0
-1 4 -1
0 -1 0

Laplacian II

1 0 -1
2 0 -2
1 0 -1

Sobel Horizontal
Edge Detection

1 2 1
0 0 0
-1 -2 -1

Sobel Vertical
Edge Detection

Copyright (c) 2007 Cmpware, Inc.

The Multicore Architecture
● 3 PowerPC processors
● 'Ring' architecture
● 16k local memory per CPU

● Image processing code
● Local data

● 128k shared memory per CPU
● Shared between adjacent pairs of processors
● Provides all communication and synchronization

PPC PPC PPC

Copyright (c) 2007 Cmpware, Inc.

Modeling the Architecture
● Uses existing Cmpware models:

● Processor: PowerPC
● Network: Ring
● Link: SharedMemory (not used)
● System Memory: Ring

● Pre-configured in 'ppcdemo' Eclipse plugin
installable from:

http://www.cmpware.com/ppcdemo/

PPC PPC PPC

http://www.cmpware.com/ppcdemo/

Copyright (c) 2007 Cmpware, Inc.

The 'ppcdemo' Preferences

Copyright (c) 2007 Cmpware, Inc.

PowerPC

16k

<- Link

128k

Link ->

PowerPC

16k

PowerPC

<- Link

16k

128k

Link ->

The Processing Node

Local
Memory

<- Link

128k

Link ->

Shared
Memory

Copyright (c) 2007 Cmpware, Inc.

<- Link

128k

Link -> PowerPC

16k

0x40000

<- Link

128k

Link -> PowerPC

16k

<- Link

128k

Link ->

Addressing Shared Memory

0x800000x80000

0x40000

● Each node 'sees' two shared memories
● 'East' shared memory at address 0x40000
● 'West' shared memory at address 0x80000

Copyright (c) 2007 Cmpware, Inc.

The Cmpware CMP-DK IDE
● Multicore simulation model 'plugs in' to the

Cmpware IDE
● Dynamically customizes the displays for this

multicore architecture
● Standard compiled PowerPC executables run

on the simulation model
● A debugger-like interface displays system

information, including performance data

Copyright (c) 2007 Cmpware, Inc.

Cmpware CMP-DK IDE

CPU
Compiler /

Tools

ELF /
DWARF
Loader

Cmpware Multiprocessor
Simulation Engine

Link
Traffic DasmSource

Code

Instr.
Trace

Memory
DumpProfiler Registers

Simulation
Model

Copyright (c) 2007 Cmpware, Inc.

Executing the Application
● Uses existing 'C' compilers (Gnu)
● Communication through shared memory

● Requires use of same memory map / addresses
as hardware simulation model

● Memory mapped channels also available
● Image.c compiled for different filters
● Image0.c initiates execution
● Image data pre-loaded into processor (0,0)

shared memory from Flower256.elf

Copyright (c) 2007 Cmpware, Inc.

Building the 'C' Code

Copyright (c) 2007 Cmpware, Inc.

PowerPC

128k

The Image Filtering Application

PowerPC

smooth()
16k

128k

PowerPC

128k

load()
16k

edge()
16k

Copyright (c) 2007 Cmpware, Inc.

Running the 'C' Code in the
Cmpware CMP-DK

Copyright (c) 2007 Cmpware, Inc.

The Inner Loops

 /* Wait until image data available */
 while (*(image+(HEIGHT*WIDTH)) == 0)
 ; // wait

 /* Process the image */
 for (y=0; y<HEIGHT; y++)
 for (x=0; x<WIDTH; x++)
 dest[(y*WIDTH)+x] = filter(x, y, KERNEL);

 /* Synchronize */
 /* (tell the next processor that the image is ready) */
 *(dest + (HEIGHT*WIDTH)) = 1;

Copyright (c) 2007 Cmpware, Inc.

The P(0,0) Original Image

Cmpware
Controls

Selected
Processor

Memory
Image View

Copyright (c) 2007 Cmpware, Inc.

The P(1,0) Smoothed Image

Cmpware
Controls

Selected
Processor

Memory
Image View

Copyright (c) 2007 Cmpware, Inc.

The P(2,0) Edge-detected Image

Cmpware
Controls

Selected
Processor

Memory
Image View

Copyright (c) 2007 Cmpware, Inc.

Performance
● Processor (0,0) only loads original image
● Two processors processing images

● Smoothing with 3 x 3 kernel
● Edge enhancement with 3 x 3 Laplacian filter

● 100M cycles total execution
Problem: edge detection waits for entire

image smoothing before beginning
==> 50% processor utilization (even / odd

pattern)

Copyright (c) 2007 Cmpware, Inc.

Improving Performance
● Performance limited by synchronization
● No need to wait for entire image
● Plan: synchronize at every line of pixels

● Somewhat more complex code
● Executes in 50M cycles
● 2x performance of original code
● Approaches 100% processor efficiency
● Performance extends to higher numbers of

processors

Copyright (c) 2007 Cmpware, Inc.

The Improved Inner Loops

 /* Process the image */
 for (y=0; y<HEIGHT; y++) {

 while (*imageLineReady < (y+3))
 ; // wait for data to be ready

 /* Process line of pixels */
 for (x=0; x<WIDTH; x++)
 dest[(y*WIDTH)+x] = filter(x, y, KERNEL);

 /* Tell the next processor we finished line <y> */
 *currentImageLine = y;

 } /* end for(y) */

Copyright (c) 2007 Cmpware, Inc.

Parallelism
● Lots of parallelism available in this algorithm
● Every stage depends on 3 available lines
● Each pixel can be computed in parallel
● Potential for hundreds of processing cores
● Real-time requirements suggest far fewer

● 1k x 1k video at 30 fps = 30M pixels / sec
● At 100 ops per pixel, 3B ops / sec
● 10 cores at 300 Mhz (approx.)

Copyright (c) 2007 Cmpware, Inc.

A Note on Synchronization
● Proper synchronization very important
● Shared Memory generally requires atomic

'test-and-set' operation
● This Image Processing algorithm:

● Only sends data in one direction
● One reader, one writer
● Can use a simpler synchronization scheme

● Cmpware 'channels' suitable for more
general-purpose synchronization

Copyright (c) 2007 Cmpware, Inc.

Cmpware CMP-DK
● Model complex multicore processors
● Edit, compile, execute and debug multicore

software
 ... all in the same friendly environment

● Develop multicore code faster
● Evaluate performance more quickly
● Faster feedback for algorithm partitioning
● Evaluate more alternatives in less time
● Produce more reliable multicore software

Copyright (c) 2007 Cmpware, Inc.

Installing the Demo

● Available as an Eclipse plugin at the Eclipse
update site:

http://www.cmpware.com/ppcdemo/

● Other files avaliable at:
http://www.cmpware.com/ppcdemo/Ppcfiles.zip

● For more information on how to install an
Eclipse plugin from an update site, see:

http://www.cmpware.com/demo/DemoInstall_2.2.1.pdf

http://www.cmpware.com/ppcdemo/
http://www.cmpware.com/ppcdemo/Ppcfiles.zip
http://www.cmpware.com/demo/DemoInstall_2.2.1.pdf

Copyright (c) 2007 Cmpware, Inc.

Extra Slides

Copyright (c) 2007 Cmpware, Inc.

The Original Image

Copyright (c) 2007 Cmpware, Inc.

After Smoothing

Copyright (c) 2007 Cmpware, Inc.

After Laplacian Edge Detection

