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Multicore Image Processing
● Multicore devices increasingly used for image 

and video processing
● High performance, low power and high levels 

of programmability make multicore attractive
● This demo uses the Cmpware CMP-DK to:

1.  Model a multicore architecture
2.  Write software for this architecture
3.  Execute compiled code on the model
4.  View the results interactively in the IDE
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Other Morphology Kernels
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The Multicore Architecture
●  3 PowerPC processors
● 'Ring' architecture
● 16k local memory per CPU

● Image processing code
● Local data

● 128k shared memory per CPU
● Shared between adjacent pairs of processors
● Provides all communication and synchronization

PPC PPC PPC
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Modeling the Architecture
● Uses existing Cmpware models:

● Processor:  PowerPC
● Network:  Ring
● Link:  SharedMemory (not used)
● System Memory:  Ring

● Pre-configured in 'ppcdemo' Eclipse plugin 
installable from:

http://www.cmpware.com/ppcdemo/

PPC PPC PPC

http://www.cmpware.com/ppcdemo/
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The  'ppcdemo' Preferences
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<- Link
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Addressing Shared Memory

0x800000x80000

0x40000

● Each node 'sees' two shared memories
● 'East' shared memory at address 0x40000
● 'West' shared memory at address 0x80000
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The Cmpware CMP-DK IDE
● Multicore simulation model 'plugs in' to the 

Cmpware IDE
● Dynamically customizes the displays for this 

multicore architecture
● Standard compiled PowerPC executables run 

on the simulation model
● A debugger-like interface displays system 

information, including performance data
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Cmpware CMP-DK IDE
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Executing the Application
● Uses existing 'C' compilers (Gnu)
● Communication through shared memory

● Requires use of same memory map / addresses 
as hardware simulation model

● Memory mapped channels also available
● Image.c compiled for different filters
● Image0.c initiates execution
● Image data pre-loaded into processor (0,0) 

shared memory from Flower256.elf
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Building the 'C' Code
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PowerPC
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The Image Filtering Application
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Running the 'C' Code in the 
Cmpware CMP-DK
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The Inner Loops

   /* Wait until image data available */
   while (*(image+(HEIGHT*WIDTH)) == 0)
      ;  // wait

   /* Process the image */
   for (y=0; y<HEIGHT; y++)
      for (x=0; x<WIDTH; x++)
         dest[(y*WIDTH)+x] = filter(x, y, KERNEL);
         
   /* Synchronize */
   /* (tell the next processor that the image is ready) */
   *(dest + (HEIGHT*WIDTH)) = 1;
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The P(0,0) Original Image
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The P(1,0) Smoothed Image
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The P(2,0) Edge-detected Image
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Performance
● Processor (0,0) only loads original image
● Two processors processing images

● Smoothing with 3 x 3 kernel
● Edge enhancement with 3 x 3 Laplacian filter

● 100M cycles total execution
Problem:  edge detection waits for entire 

image smoothing before beginning
==> 50% processor utilization (even / odd 

pattern)
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Improving Performance
● Performance limited by synchronization
● No need to wait for entire image
● Plan:  synchronize at every line of pixels

● Somewhat more complex code
● Executes in 50M cycles
● 2x performance of original code
● Approaches 100% processor efficiency
● Performance extends to higher numbers of 

processors
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The Improved Inner Loops

   /* Process the image */
   for (y=0; y<HEIGHT; y++) {
      
       while (*imageLineReady < (y+3))
          ;  // wait for data to be ready
 
         /* Process line of pixels */
         for (x=0; x<WIDTH; x++)
            dest[(y*WIDTH)+x] = filter(x, y, KERNEL);
          
         /* Tell the next processor we finished line <y> */  
         *currentImageLine = y;
            
      }  /* end for(y) */
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Parallelism
● Lots of parallelism available in this algorithm
● Every stage depends on 3 available lines
● Each pixel can be computed in parallel
● Potential for hundreds of processing cores
● Real-time requirements suggest far fewer

● 1k x 1k video at 30 fps = 30M pixels / sec
● At 100 ops per pixel, 3B ops / sec
● 10 cores at 300 Mhz (approx.)
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A Note on Synchronization
● Proper synchronization very important
● Shared Memory generally requires atomic 

'test-and-set' operation
● This Image Processing algorithm:

● Only sends data in one direction
● One reader, one writer
● Can use a simpler synchronization scheme

● Cmpware 'channels' suitable for more 
general-purpose synchronization
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Cmpware CMP-DK
● Model complex multicore processors
● Edit, compile, execute and debug multicore 

software
      ... all in the same friendly environment

● Develop multicore code faster
● Evaluate performance more quickly
● Faster feedback for algorithm partitioning 
● Evaluate more alternatives in less time
● Produce more reliable multicore software
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Installing the Demo

● Available as an Eclipse plugin at the Eclipse 
update site:

http://www.cmpware.com/ppcdemo/

● Other files avaliable at:
http://www.cmpware.com/ppcdemo/Ppcfiles.zip

● For more information on how to install an 
Eclipse plugin from an update site, see:

http://www.cmpware.com/demo/DemoInstall_2.2.1.pdf

http://www.cmpware.com/ppcdemo/
http://www.cmpware.com/ppcdemo/Ppcfiles.zip
http://www.cmpware.com/demo/DemoInstall_2.2.1.pdf
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Extra Slides
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The Original Image
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After Smoothing
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After Laplacian Edge Detection


