
Copyright (c) 2005 Cmpware, Inc.

Programming Configurable
Multiprocessors

Cmpware, Inc.

Copyright (c) 2005 Cmpware, Inc.

Introduction
● One billion transistors available (2005)
● 1B transistor custom designs very expensive
● Emerging trend: multiprocessors

● Large, programmable IP blocks (CPUs)
● Thousands of CPUs / millions of MIPS

CPUCPU

2000 SoC

ASIC
CPU

2005 SoC

ASIC
CPU

2005 MP-SoC

CPU CPU CPU CPU CPU CPUCPU

CPUCPU CPU CPU CPU CPU CPUCPU

CPUCPU CPU CPU CPU CPU CPUCPU

CPUCPU CPU CPU CPU CPU CPUCPU

CPUCPU CPU CPU CPU CPU CPUCPU

CPUCPU CPU CPU CPU CPU CPUCPU

Copyright (c) 2005 Cmpware, Inc.

System Level Multiprocessors
● Dozens of complex processors
● Low communication / computation ratio
● Large grained parallelism (tasks)

CPU

CPU CPU

CPU Large, complex CPUs

High latency serial links

Copyright (c) 2005 Cmpware, Inc.

Chip Level Multiprocessors
● Thousands of simple processors
● High communication / computation ratio
● Fine grained parallelism (sub-task)

CPU

Small simple CPUs

Low latency
parallel links

CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

Copyright (c) 2005 Cmpware, Inc.

Hardware Design Programming
Model

● A popular, well-understood model
● Increasingly similar to software (HDLs, ESL)
● Highly parallel / high performance
● Placement techniques ('floorplanning')
● Restrictions:

● Array of CPUs, not 'random logic'
● On-chip network, not 'random wires'
● Resembles programmable logic devices

Copyright (c) 2005 Cmpware, Inc.

Programming Techniques
● Use traditional tools and languages ('C')
● Use volatile variables in shared memory
● Communicate via variable assignment ('=')
● Read shared variables in as parameters
● Write shared variables out as results

 volatile int *in, *out;
 *out = myCode(*in);

Copyright (c) 2005 Cmpware, Inc.

 volatile int *x, *in, *tmp, *out;
 *x = fft(*in);
 *tmp = f(x);
 *out = ifft(tmp);

Filtering Example

CPU CPU

In Out

CPU

fft() f() ifft()

xin tmp out

FFT f() IFFT

Copyright (c) 2005 Cmpware, Inc.

Exploiting Parallelism
● Sub-task / procedure level parallelism
● Break procedures down into smaller blocks
● Assign blocks to processors
● Replace local variables with shared volatiles
● Hardware technique: floorplanning

● Group functions for efficiency
● Group according to communication patterns
● Groupings may be heirarchical

Copyright (c) 2005 Cmpware, Inc.

Sub-Task Parallelism

CPU

fft()

f()

ifft()

xin tmp out
CPU CPU

CPU CPU

CPU

CPU CPU

CPUCPU CPU CPU

CPU CPU CPU

CPU CPU CPU

CPU CPU CPU

fft() f() ifft()

xin tmp out

Copyright (c) 2005 Cmpware, Inc.

Software Floorplanning

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

Copyright (c) 2005 Cmpware, Inc.

Dynamic Behavior
● Flexiblity not possible with fixed hardware
● Add / change functionality
● A procedure call converts f(x) to z(y)
● Response to external inputs

● Adjust functionality (example: MP3 ==> WMA)
● Trade power consumption for performance
● Reduce system size

● Highly reconfigurable

Copyright (c) 2005 Cmpware, Inc.

Conclusions
● Very high performance available through

single chip multiprocessing
● A highly programmable solution
● Hardware-style programming techniques can:

● Provide programmability
● Leverage existing tools
● Simplify porting of existing code
● Give high levels of performance

