
Copyright (c) 2005 Cmpware, Inc.

Programming Configurable 
Multiprocessors

Cmpware, Inc.



Copyright (c) 2005 Cmpware, Inc.

Introduction
● One billion transistors available (2005)
● 1B transistor custom designs very expensive
● Emerging trend: multiprocessors

● Large, programmable IP blocks (CPUs)
● Thousands of CPUs / millions of MIPS
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System Level Multiprocessors
● Dozens of complex processors
● Low communication / computation ratio
● Large grained parallelism (tasks)
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Chip Level Multiprocessors
● Thousands of simple processors
● High communication / computation ratio
● Fine grained parallelism (sub-task)
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Hardware Design Programming 
Model

● A popular, well-understood model
● Increasingly similar to software (HDLs, ESL)
● Highly parallel / high performance
● Placement techniques ('floorplanning')
● Restrictions:

● Array of CPUs, not 'random logic'
● On-chip network, not 'random wires'
● Resembles programmable logic devices
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Programming Techniques
● Use traditional tools and languages ('C')
● Use volatile variables in shared memory
● Communicate via variable assignment ('=')
● Read shared variables in as parameters
● Write shared variables out as results

 volatile int *in, *out;
 *out = myCode(*in);
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 volatile int *x, *in, *tmp, *out;
 *x = fft(*in);
 *tmp = f(x);
 *out = ifft(tmp);

Filtering Example
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Exploiting Parallelism
● Sub-task / procedure level parallelism
● Break procedures down into smaller blocks
● Assign blocks to processors
● Replace local variables with shared volatiles
● Hardware technique:  floorplanning

● Group functions for efficiency
● Group according to communication patterns
● Groupings may be heirarchical
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Sub-Task Parallelism
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Software Floorplanning
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Dynamic Behavior
● Flexiblity not possible with fixed hardware
● Add / change functionality
● A procedure call converts f(x) to z(y)
● Response to external inputs

● Adjust functionality (example:  MP3 ==> WMA)
● Trade power consumption for performance
● Reduce system size

● Highly reconfigurable
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Conclusions
● Very high performance available through 

single chip multiprocessing
● A highly programmable solution
● Hardware-style programming techniques can:

● Provide programmability
● Leverage existing tools
● Simplify porting of existing code
● Give high levels of performance


