

Configurable Multiprocessing

Cmpware, Inc.

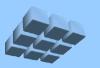
Copyright (c) 2004 Cmpware, Inc.

Introduction

- **Multiprocessing** is the new trend in hardware architecture and design
- **Microprocessors**: *all* newly announced desktop CPUs are multiprocessor.
- **FPGAs**: multiple processor cores found in FPGAs. "Soft" processors increasingly popular.
- **ASICs**: recent designs using several processors, with hundreds being reported.

Microprocessors

<u>CPU</u>	<u>Year</u>	<u>Transistors</u>	<u>Speed</u>
Intel 8008	1972	3,500	0.5 Mhz
Intel 386	1985	275,000	33 MHz
Intel Pentium	1993	3.1 M	66 Mhz
Intel Pentium II	1997	7.5 M	300 Mhz
Intel Pentium 4	2000	42 M	1 Ghz
Intel Itanium 2	2004	400 M	1.6 Ghz

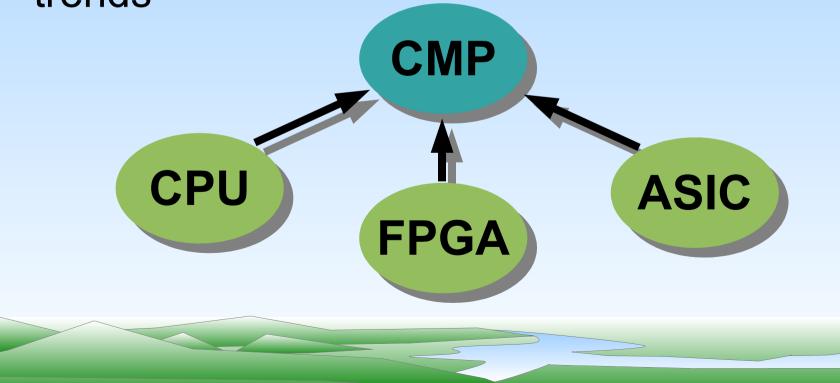

- 30 years of improvements (Moore's Law)
- This trend has "hit the wall"
 - Clock speeds no longer increasing
 - Power consumption cannot increase

Multicore Microprocessors

- Microprocessors going multicore
- All major desktop processor vendors have announced multicore processors
 - Hyperthreaded (HT) Intel Pentium 4
 - Sun SPARC (Gemini, Niagara, Rock)
 - IBM PowerPC 970MP
 - Sony / IBM / Toshiba Cell
- All future high-performance processor designs will be multicore

Field Programmable Gate Arrays

- FPGAs have same clock speed and power problems as microprocessors
- Mircroprocessor cores now found in FPGAs
- Multiple PowerPC cores in Xilinx Virtex II Pro
- Altera NIOS "soft" processor cores becoming increasingly popular
- Newer ALU arrays point toward increasing cell complexity



Application Specific ICs

- ASIC vendors reporting multiple processor core designs
- Customers average six cores per design
- Designs of over a hundred cores reported
- Popular in networking, Digital Signal Processing and multimedia
- Small startups offering multiprocessor devices (*picoChip*, Cradle, QuickSilver, Icera, 3plus1, etc.)

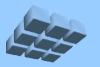
Configurable Multiprocessing

- Multiple CPU Cores
- On-chip interconnect network
- Convergence of CPU, ASIC and FPGA trends

The Hardware Design Crisis

- Hardware design challenges:
 - Managing up to 1 billion transistors requires large teams and high levels of coordination
 - New silicon processes difficulties with yields, signal integrity, etc ...
 - Power power limitations becoming the primary design constraint
 - Verification as much as 70% of the design effort is now in verification. And re-spins of silicon are still common.

The Configurable Multiprocessing Solution


- Design process greatly simplified
 - Uses large IP blocks (processor cores)
 - Can fill up even the largest die
- Verification all but eliminated
 - CMP uses pre-verified IP (processor cores and interconnection networks)
- Excellent power efficiency and performance
- Provides a highly programmable solution

Multiprocessing by the Numbers

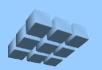
- Example: Arc Cores Inc. Arc600
 - 32-bit RISC CPU for embedded SoC
 - Base core: 27k gates, 8 mW @ 200 MHz
- Multiprocessing with an Arc core:
 - 3,000 Arc600 cores on a die (assuming 5T per gate @ 500M T)
 - → 600K MIPS (600 GIPS) raw performance
 - → 24 W total power consumption
 - → 25,000 MIPS / Watt (!)

A Reprogrammable Solution

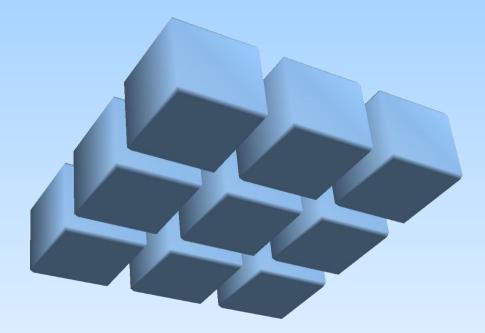
- System defined by software
- No hardware re-designs or re-spins
- Field upgradable for bug fixes and enhancements
- All design uses standard software development tools (compilers)
- None of the restrictions of earlier "reconfigurable" architectures

CMP Programming

- Use of processors permit standard High Level Languages (HLLs) such as 'C' or Java
- Large, slow and expensive hardware design tools not a part of the programming flow
- CMP communication an architectural / hardware decision that will define the programming model
- Important fact: very high communication bandwidth paths available on-chip


Communication / Computation

- Ratio of computation to communication defines which algorithms will benefit from a parallel architecture
- System level multiprocessors have relatively powerful processors and relatively slow communication links (10,000:1 ratio)
- CMP has essentially 1:1 ratio
- CMP characteristics similar to hardware
- Lots of parallelism exposed; easy to exploit



CMP Design

- Use cheap MIPS to do everything (or almost everything) in software
- Actually reduces system complexity
- Power / performance tradeoffs available
- Processing resources can be easily redeployed and re-used
- Reuse offers further size and power advantages

Configurable Multiprocessing from Cmpware, Inc.

Copyright (c) 2004 Cmpware, Inc.