
Extending the Cmpware CMP-DK Page 1

Extending the
Cmpware CMP-DK

(Version 2.0 for Eclipse 3.1)

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is a
multiprocessor simulation and software development environment. It provides fast and
efficient modeling of multiprocessor architectures as well as support for software
development on such systems. The goal of supporting software development is
achieved by providing an interactive, display-rich environment that permits large
amounts of information to be displayed in a fast, simple and uncluttered format. Such
capabilities are essential in analyzing the behavior of multiprocessor systems.

The Cmpware CMP-DK (version 2.0) for Eclipse 3.1 and higher contains customizable
models for various popular processors, memories and communication links. These
models transparently interface to a powerful Eclipse-based Integrated Development
Environment (IDE) that provides a powerful multiprocessor architecture and software
development environment. This environment features displays for:

One of the most powerful and useful features of the Cmpware CMP-DK is the ability to
extend its functionality. The existing Cmpware CMP-DK can be added to and modified
through a simple and standard procedure. Unlike other systems, this does not require
access to the system source code; new code can be added without any changes or
modification to the existing system. This procedure also uses standard design and
implementation development tools. In fact, the standard Eclipse development
environment can be used for all development of extensions for the Cmpware CMP-DK.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

 Source Code Tracing
 Source Code Variables
 Disassembly
 Memory Display
 Power Estimator

 General Purpose Registers
 Special Purpose Registers
 Command Line Interface
 Link Utilization

Extending the Cmpware CMP-DK Page 2

Extending the Cmpware CMP-DK

The Cmpware CMP-DK is an Eclipse-based development environment. This means
that the popular Java-based Eclipse Integrated Development Environment (IDE)
framework is used to tie together and provide basic functionality for the Cmpware
development environment. One of the major benefits of the Eclipse development
environment is that it is extensible. That is, it can be added to in various ways using
well-defined and self-contained software modules. In fact, the primary mechanism for
using Eclipse is to provide such extensions to supply new functionality. The entire
Cmpware CMP-DK, as well as nearly all Eclipse-based systems, make extensive use of
this extension functionality.

While the ability to extend Eclipse is a useful and powerful capability, this functionality
can be passed on to subsequent layers of software which use Eclipse. In fact, the
Cmpware CMP-DK permits new windows or views to be added to the Cmpware CMP-
DK with relatively little effort. There is no limit to the sophistication of such displays,
including complex graphical and interactive views. More complex displays will,
however, make more extensive use of the underlying Eclipse functionality. This will
typically require a higher level of familiarity with the underlying Eclipse system.

A simple example is presented in this document to demonstrate the extension of the
Cmpware CMP-DK. Such extension is likley to be of great value to architectures or
even algorithms that may require non-standard display of system data. Or users may
simply wish to establish and use new debug and analysis techniques in their system,
further adding value to the Cmpware CMP-DK for their particular application.

This example focuses on the details of making the extension successfully interact with
the Cmpware CMP-DK and underlying the Eclipse framework. The actual example is
kept relatively simple so as not to obscure this part of the design and development
process. But this code should be usable as a starting point for more complex
extension.

The Show All PCs View

As an example, a new view showing all of the Program Counters (PCs) in the current
multiprocessor is implemented. While this is a somewhat artificial example, such a
display may be useful in some systems or in certain situations. Most importantly, this
demonstration covers all of the significant aspects of producing an extension view
without getting overly involved in the details of more complex (but powerful) Eclipse
functionality. This example will display the data in a simple text window and will be
updated along with all of the other displays in the Cmpware CMP-DK.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 3

The Show All PCs example can easily serve as a template to display similar data or as
a starting point for potentially more sophisticated views. In particular, this example aims
to document the Eclipse-specific steps necessary to make such extensions work
together with the rest of the system.

While not overly complex, this particular part of the Eclipse system is not especially well
documented, and existing documentation often assumes a high level of familiarity with
the Eclipse system. It is, however, possible to produce such extensions and views with
very little overall knowledge of the underlying Eclipse system. This example provides
all of the necessary steps necessary in producing these extensions.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 1: Creating the new AllPCs Fragment development project.

Extending the Cmpware CMP-DK Page 4

The ShowAllPCs Project

This example assumes that Eclipse 3.0 or greater is installed on the development
system. In addition, the Cmpware CMP-DK version 2.0 or greater must also be
installed. If the Cmpware CMP-DK is not installed see the installation documents from
the Cmpware web site at http://www.cmpware.com/ .

The first step in generating a new view for the Cmpware CMP-DK is to create a new
Java project for code development. While any Java development environment may be
used, it is most convenient to use the existing Eclipse IDE. It contains functionality that
will assist in producing the final deployable version of the extension in later

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 2: Initializing the Fragment project.

Extending the Cmpware CMP-DK Page 5

implementation steps.

In general, the process for creating and deploying this new project is nearly identical to
the procedure for creating and deploying any Java software for Eclipse. This document
will cover all of the steps necessary to setup and produce the final deployable software,
but the emphasis will be on the unique aspects of the system necessary to interact with
the existing Cmpware CMP-DK. Other aspects of using the Eclipse system are more
thoroughly documented in other places, in particular at the Eclipse web site at
http://www.eclipse.org/

To begin, bring up Eclipse. If it does not default to the Java development IDE, you can
select it with the Window --> Open Perspective --> Java menu item. Next create a

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 3: The Fragment project.

Extending the Cmpware CMP-DK Page 6

new project using the File --> New --> Project ... menu item. This brings up the Dialog
box in Figure 1 which allows the selection of the type of project to be built. In this case,
we are building a Fragment Project under Plugin Development.

It is important to select the Fragment Project. A Fragment is an Eclipse construct
used specifically to extend an existing Eclipse plugin. A fragment takes some compiled
Java code and a few files used for interfacing and control and performs the connection
to the existing Eclipse code. There are other ways to accomplish this under Eclipse,
but this example the Fragment approach is the simplest and most appropriate.

The next step in setting up the Fragment project is to specify some information
requested in the dialog box in Figure 2. The offered defaults are all appropriate, and
the blank field for the Fragment Provider in this example is set to YourCompany, Inc.
This Fragment Provider name is used to demonstrate that the fragment can be
completely decoupled from Cmpware developed software.

Additionally, the required Plugin ID field must be set to com.cmpware.ide. This
Plugin ID is selected from the [Browse...] button and the com.cmpware.ide item
should be selected from the menu. Note that the Cmpware Plugin ID must be selected.
This is the linkage point which tells the extension about the Cmpware CMP-DK plugin.
Using an incorrect value in this field will result in the Fragment not being able to access
the functions of the Cmpware CMP-DK, which are essential for this example.

Pressing the [Finish] button completes the process and sets up the Fragment
development environment. A dialog box may also ask if the Plugin Development
Perspective should be opened. Since this is the default development IDE for
Fragments, the [Yes] button should be selected. This produces the completed AllPCs
fragment project as in Figure 3. The parameters set during this initialization, as well as
other parameters, can be set and modified in this window shown in Figure 3.

The next step is to input the Java source code necessary to implement the extension.
Selecting the File -> New -> Class menu item will bring up a dialog box used to
initialize a new Java source file. The source code can generally take any form, in
multiple files and multiple classes in any number of packages. In this case there will be
a single class called AllPCs in a single file called AllPCs.java. This file will be placed in
the package com.yourcompany.ide, primarily to demonstrate that this Fragment can
be kept distinct from the Cmpware code. Finally, pressing the [Finish] button will
cause the new file to be brought up in a new Java source code text editing window.
The contents of this window contain a 'skeleton' of the necessary portions of code used
in the class.

Appendix A at the end of this document shows the Java source code used to

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 7

implement the AllPCs view. It should be entered into this text window exactly as in
Appendix A. At this point, the code should compile and produce a Java "class" file.

The ShowAllPCs Java Code

The ShowAllPCs Java source code is fairly small and simple considering the
functionality provided. Much of it is, however, specific to either Eclipse or Cmpware and
may require some explanation. The code does contain source code comments that
may provide insights into the internal workings of this software.

Begining from the top of the source code listing, the first thing to note is that AllPCs
extends a class called ViewPart and implements another class called IListener.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 4: The AllPCs source code development environment.

Extending the Cmpware CMP-DK Page 8

The ViewPart class is a component of Eclipse that implements the display of a
window in the IDE, or a 'view' in Eclipse parlance. This requires that some particular
methods be implemented for this class. Similarly, the IListener also requires that
some methods be provided by this class, but IListener is provided by Cmpware.
This is the event notification of change in the state of the multiprocessor model. In
general, all displays in Cmpware update their information in response to a change in the
multiprocessor model. The IListener interface provides this functionality.

The first method in the AllPCs class is the createPartControl(). This is used to
set up the style and contents of the new window. In this example a simple Text
window is used with horizontal and vertical scrolling. Note that it is important that this
definition of graphical user interface elements be performed in this method. It is a

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 5: Adding the Extension Point.

Extending the Cmpware CMP-DK Page 9

requirement of Eclipse and attempting to build or modify the graphical user interface
structure in other parts of the code may result in errors.

This method also registers the AllPCs class ('this') with the multiprocessor event
listener. This means that when the multiprocessor state changes, it will notify the
AllPCs class. This is done by calling another method in this class, handleEvent().

The next method in the AllPCs class is dispose(). This method is the opposite of
createPartControl(). It is used to undo everything done in
createPartControl(). Eclipse objects that are manually allocated or other
'housekeeping' chores are performed here.

The setFocus() method is also added as required by the partControl class, but it
performs no particular function in this example and is left blank.

The last method is the handleEvent() method as required by IListener. This is
where most of the work occurs. In this example, a simple text window is updated with
both Text.setText() and Text.append() methods. This simply changes the text
displayed in the window. The rest of this code uses methods from the Cmpware
multiprocessor model, MpModel.

First, the size of the multiprocessor array is determined with the getRows() and
getCols() methods from the multiprocessor model. Note that this is done on every
update, since it is possible that the multiprocessor model may have changed between
updates. Setting row and column parameters to some fixed values, even temporarily,
can result in a run time error and should not be attempted. Getting such details correct
are very important to producing a robust system.

Finally, the values of these Program Counters are are printed out in an array using the
Text.append() method. This is all of the Java code necessary to add a new view to
the Cmpware CMP-DK.

This point about coding errors should perhaps be emphasized further. While the code
in AllPCs is completely distinct from both the Cmpware plugin and the Eclipse
framework, it does have access to much of the internal machinery of both. This permits
a wide variety of alternatives in designing the new extension, but also permits a wide
variety of bugs. Illegal code, even in this extension, can have large impacts on the
overall system. It is recommended that the designer of the extension take extra care in
interactions with the other pieces of the system.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 10

Adding Extension Points

Once all of the Java code is written, one more piece of information called the Extension
Point must be added to the project. AllPCs connects to the Cmpware CMP-DK and
Eclipse via a well-defined and exported interface. This information must be passed on
to the system so that it know how to configure and dynamically link the new extension
into the existing code.

In this case, the AllPCs project main page has a tab called Extensions. The [Add...]
button in this tab is pressed and it brings up the menu in Figure 5. From this list of
extension points, scroll down and select org.eclipse.ui.views. This is the
standard view interface used by AllPCs and Eclipse. Pressing the [Finish] button adds
this extension point.

Now the point is added, but it must be customized. Right click on the new
org.eclipse.ui.views point in the All Extension windows and select the Add ->
View menu item. This brings up the dialog box in Figure 6. Most of the defaults are
acceptable, but some of the blank fields must be filled in. These fields should have the
following values:

 ID: The Extension ID is set to com.yourcompany.ide.AllPCs. This is a unique
tag to identify the extension. In this case the full class name is used, since it is a
unique identifier, although other values would work just as well.

 Name: The Extension Name is set to the string "Show All PCs" and is used for
display purposes. This string will be displayed on the top of the AllPCs view window as
well as in the selection list used to bring up the new window.

 Class: The Extension Class is set to com.yourcompany.ide.AllPCs. This is the
actual full Java class name for the AllPCs class. This is perhaps the most important
item in this list. This is used to load and execute the code in the AllPCs class.

 Category: The Extension Category is set to com.cmpware.ide. This is used to
group the view command with the other Cmpware menu items used to bring up a new
window. In this case the Cmpware CMP-DK uses this category for its other views.

 Icon: The Extension Icon is set to icons/Cmpware16x16.gif. This defines the
small icon in the upper left corner of the window. The Cmpware icon used here is the
one in all of the Cmpware views. This could just as easily be any valid bitmap in the
system including Eclipse standard icons or one created and packaged specially for this
view.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 11

 fastViewRato: The Extension fastViewRatio is set to 33. This is a general guide
telling how large the initial window should be. This is the value used by other
Cmpware CMP-DK windows in the main window and indicates that this window should
take up approximately 2/3 of the Eclipse display. This is only a default used in the
absence of other windows established in the IDE.

 allowMultiple: The Extension allowMultipe flag is a boolean value used to
determine if multiple windows of this type may be opened. In this case it is set to
false, indicating that only one of these windows should be open at a time. While
there may be little harm in opening multiple AllPCs windows, the data will always be the
same. And since all other Cmpware CMP-DK views do not allow multiple windows, this
value will be used for consistency.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 6: The values used by the AllPCs view extension point.

Extending the Cmpware CMP-DK Page 12

Once these value have been entered and the File Save button is pressed in the Eclipse
IDE, a file called fragment.xml is produced. In fact, the entire point of filling in all of
these fields is to produce this XML file, along with a manifest file named
MANIFEST.ML.

These files are reproduced in Appendix B, and contains the fields just entered, but in an
XML format. XML or manifest files that differ substantially from this one are probably
incorrect and the values entered in the IDE should be checked. Also note that two
values in this XML file, 'plugin-id' and 'plugin-version' were used in previous
version of Eclipse but are no longer used. These fields may be included and left blank.
This may produce a warning message, but this is harmless and can be ignored.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 7: Making the new AllPCs feature.

Extending the Cmpware CMP-DK Page 13

The ShowAllPCs Feature

At this point, the AllPCs code and its linkage to the existing Eclipse and Cmpware code
has been defined. The next step involves producing the files in a deployable format
that can easily be installed by Eclipse. This is referred to in Eclipse as a Feature.
While these features can be installed in a variety of ways, this example will package this
feature into an Eclipse Update Site which will be placed at a pre-specified WWW URL.
This then permits users to easily download and install this feature using the built in
Eclipse 'update' mechanism. This also permits new version of the feature to be
produced, permitting users to easily update to the new version.

It should be noted that there are other ways to deploy this type of fragment code,
notably by manually copying files into directories in the main Eclipse distribution. But
packaging this code into a feature makes it easier to distribute and easier for users to
install. And while this process is documented elsewhere in Eclipse documents, it is
often in the context of distribution of other Eclipse plugin code and often expects a
broad knowledge of Eclipse. This document seeks to provide a step-by-step
description of this process that will permit even novice Eclipse user to quickly distribute
and install such extensions.

Packaging the AllPCs code into an Eclipse feature uses the same process as other
Eclipse code, notably plugins, use. First, a new project must be set up. This is done
withe the File -> New -> Project ... menu item. This brings up a dialog box. Select the
Feature Project under Plugin Development.

A project Name of AllPCs_feature is given as in Figure 7. This fills in the fields in
Figure 8 with the defaults shown. Additionally, the Provider field is modified to be
YourCompany, Inc. Pressing the [Finished] button results in the project being
intitialized.

Once the Feature project is initialized, the code in the AllPCs project must be included
in the feature. The tabs at the bottom of the new project should be viewed one by one
and appropriate information included. The default tab, called Overview contains some
fields that are filled in in this example. In this example the Update site is set to be
http://www.cmpware.com/AllPCsUpdate/ and the update site name set to
AllPCs Update Site. This will eventually be the location of the Feature where it can be
downloaded and installed by users. You may wish to use other values more
appropriate to your system.

The next tab is the Information tab, which is itself a tabbed page. These contain
copyright and licensing information. This can be filled in with any appropriate

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 14

information for the particular feature.

The Plugins tab is perhaps the most important part of this set-up. It should add the
AllPCs fragment to this feature. Pressing the [Add...] button brings up the list of
available plugins to add to this feature. The AllPCs fragment should be on this list and
should be selected as in Figure 9.

As with the similar fragment.xml, the only real purpose of filling in these fields is to
produce the file named feature.xml. This file is reproduced in Appendix C for reference.
Your feature.xml file should not be substantially different from the one in Appendix C.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 8: Initializing the new AllPCs feature.

Extending the Cmpware CMP-DK Page 15

The ShowAllPCs Update Site

Once a feature has been successfully built from the fragment, it can be packaged into
an Update Site. An Update Site is simply a collection of files placed in a directory on a
web site. Any Eclipse IDE can be pointed toward the URL of this site and can use the
Update Site information to download and install new software in the form of features. In
this case the feature will be the AllPCs fragment, and it will be used to provide a new
view in the Cmpware CMP-DK.

As with the feature development, the Update Site is considered a new Project in
Eclipse. To build a new update site from the AllPCs feature, begin by selecting the

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 9: Adding the AllPCs plugin fragment to the new AllPCs feature.

Extending the Cmpware CMP-DK Page 16

menu items File -> New -> Project... . This will bring up the Dialog box in Figure 10.
Select the Update Site Project under Plugin Development.

Clicking the [Next >] button brings up a dialog box which requests a Project Name.
AllPCs_update will be used in this example. Pressing the [Finish] button creates a file
called site.xml and brings up the Update Site Map. In this Update Site map, press the
[Add Feature ...] button and select the AllPCs feature. This will add the AllPCs feature
to the Site Map.

At this point, all that needs to be done is to identify the web site to be used to contain
this Update site. Clicking on the Archives tab bring up the Description and Archives
page. Type in the URL of the web site location where this feature will be uploaded. In

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 10: Building the Update site

Extending the Cmpware CMP-DK Page 17

this example, the site http://www.cmpware.com/AllPCsUpdate/ is used. Of
course, your version of this example will have to use the URL of a web site to which you
have access to upload files. This demonstration will, however, be available at this
Cmpware URL. Finally, some description of the update should be entered.

After adding the new feature to the update site, pressing the file Save button will update
the site.xml file. Like the other XML files in the previous stages of development, this
one contains control information. It is reproduced in Appendix D.

Finally pressing the [Build All] button as in Figure 11 causes all of the code to be
compiled and packaged as necessary for the update site. Specifically, two directories
named features and plugins are created, each containing a JAR file. JAR files are

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 11: Adding the new Update Site.

Extending the Cmpware CMP-DK Page 18

"Java ARchive" files and contain various data used to execute Java software. Both the
site.xml and these two directories and their contents must now be uploaded to the
exact URL of the update site.

Installing the ShowAllPCs Update

Once all of the files have been uploaded to the update web site, they may be
downloaded, installed and run by any user of the Cmpware CMP-DK that has access to
this web site. This process is very simple and is well-document elsewhere but a simple
overview is provided here for convenience. See the Eclipse web site
http://www.eclipse.org/ or other Eclipse documentation for more information on
installing new Eclipse functionality from an Update Site.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 12: Adding the new Update Site.

Extending the Cmpware CMP-DK Page 19

From the main Eclipse menu, select the Help -> Software Updates -> Find and Install
... item. This brings up a large dialog box with two choices, Search for updates of
currently installed features and Search for new features to install. Select the second
option, since this is a new feature in this Eclipse installation and press the [Next >]
button. This will bring up another dialog box call Install which can be seen in Figure 12.

Press the [New Remote Site ...] button in this Install dialog box and fill in the New
Update Site fields as in Figure 12. In this example, the Name is Cmpware AllPCs
View and the URL is http://www.cmpware.com/AllPCsUpdate/

Pressing the [Ok] button adds this update site to the list of current update sites for this
installation of Eclipse. The Cmpware AllPCs View should be selected by default. If it is

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 13: Selecting the AllPCs remote Update Site.

Extending the Cmpware CMP-DK Page 20

not, select it now and press the [Finish] button.

At this point yet another dialog box should be displayed in Figure 13. Select the
Cmpware All PCs View again, but this time for download and installation. Pressing the
[Next] button this time will begin the download and installation process. Subsequent
dialog boxes may present a license agreement or other queries. Accept these and as
requested and the installion will proceed.

Also note that installing a new feature such as this one may require special access.
Minimally if this is to be installed as a part of a shared Eclipse installation, the installer
must have file write privledges for that directory. Otherwise Eclipse may request the
user enter a new installation directory for this feature. If this is only to be used by the

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 14: Opening the Show All PCs view in the Cmpware CMP-DK.

Extending the Cmpware CMP-DK Page 21

current user, it can be installed in that user's local directory. If it is to be shared, it may
be best to run Eclipse as a more privledge user and install the new features under the
standard Eclipse directory where it may be shared by all system users. This will be
more of an issue in file systems such as Linux where file systems are partitioned by
users and write protected. Windows based systems should not encounter such file
protection issues during installation.

Once the new feature is downloaded and installed, it may be necessary to restart
Eclipse. A dialog box asking permission to restart is usually presented. Restarting the
system gives access to the newly installed feature.

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Figure 15: Running the Show All PCs view in the Cmpware CMP-DK.

Extending the Cmpware CMP-DK Page 22

Using the ShowAllPCs View

Once Eclipse has been restarted, open the Cmpware CMP-DK with the menu item
Window -> Open Perspective -> Other ... and select the Cmpware item. This will
bring up the default Cmpware CMP-DK. The new AllPCs view will not be available by
default, but it should be listed under the available views for the Cmpware CMP-DK.

The new view can be found with the menu item Window -> Show View -> Other...
This bring sup the dialog box with all of the availabe views in the current Eclipse
installation. Under the Cmpware views, select the Show All PCs item as in Figure 14.

This will open the Show All PCs view, but it may be tabbed in one of the three panes in
the Cmpware CMP-DK. Double clicking on the tab expands this view to full screen, or
'dragging' the tab can move the view to another collection of tabbed views.

The Show All PCs view is blank at first, but stepping the clock in the simulation will
update the display. Figure 15 shows the new display with all of the updated values for
the Program Counters for each of the processors in the simulation model. Each time
the clock is stepped, all of the Program Counters in the display will change in unison.
This example just uses the default simulation configuration. Processors running actual
user code or a different multiprocessor model would give different results.

It is interesting to note that even though the types of processor models may vary and
the number and type are not known when the code is written, that the new display is
able to successfully display the data. This is one the strong points of the Cmpware
CMP-DK design. Because processors are defined as standard and interchangeable
units, they can be accessed and manipulated uniformly. This makes creating
extensions such as Show All PCs simpler to implement while also make them
applicable to a wide range of simulation models.

Conclusions

The Cmpware CMP-DK permits end users to 'extend' its functionality and modify and
enhance its behavior. Perhaps the simplest and most useful way to extend the
Cmpware CMP-DK is to add a new window, or view. This view can be used to display
any data desired. Typically this would be data unique to a new architecture that may
not be supported by the default values, or it may be some new and different way of
providing information about the multiprocessor system.

This extension facility permits functionality and value to be added to the Cmpware
CMP-DK without having to use the existing source code or even the source code of

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 23

Eclipse. Complete stand-alone functionality can be provided in an easily deployable
standard format.

The process used to produce these extension is relatively simple. Java code is written
to provide the new functionality. In the example used in this document, a very small
number of lines of Java code produce a completely new multiprocessor data display.

Once this Java code is written, it can be packaged as a standard Eclipse feature and
then further packaged into an Eclipse Update Site for simple, widespread deployment.
This gives all users of the Cmpware CMP-DK the ability to download and install this
new functionality. This also permits new versions of these features to be updated and
provided to all users. This permits an upgrade / update path to replace 3rd party code
with newer enhanced versions. Such functionality is often unavailable in other, similar
systems.

For more information on the commercial version of the Cmpware CMP-DK see our web
site at:

http://www.cmpware.com/

or send an email to:

info@cmpware.com

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 24

Appendix A: AllPCs.java Source Code

package com.yourcompany.ide;

import org.eclipse.ui.part.ViewPart;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Text;
import org.eclipse.swt.SWT;
import com.cmpware.ide.IListener;
import com.cmpware.ide.MpModel;
import com.cmpware.cmp.Processor;

/**
** This class demonstrates the use of plugin fragments
** to add new functionality to an existing plugin. In
** Particular this fragment produces a View in the
** Cmpware CMP-DK displaying all of the Program Counters
** (PCs) in the multiprocessor in a single window.
**
** Copyright (c) 2006 by Cmpware, Inc.
**
*/

public class AllPCs extends ViewPart implements IListener {

/** Copyright string */
public final static String copyright =
 "Copyright (c) 2006 Cmpware, Inc. All Rights Reserved.";

/**
** Create the view. This is a simple scrollable
** text window.
**
** @param parent The parent SWT object
**
**/

public void createPartControl(Composite parent) {
 int style = SWT.BORDER | SWT.V_SCROLL |
 SWT.H_SCROLL |SWT.READ_ONLY;
 /* The main window */
 text = new Text(parent, style);

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 25

 /* Listen for changes to the multiprocessor model state */
 MpModel.addStateChangeListener(this);
 } /* end createPartControl() */
/*
** (non-Javadoc)
** @see org.eclipse.ui.IWorkbenchPart#dispose()
*/

public void dispose() {
 MpModel.removeStateChangeListener(this);
 super.dispose();
 } /* end dispose() */

/*
** (non-Javadoc)
** @see org.eclipse.ui.IWorkbenchPart#setFocus()
*/

public void setFocus() {}

/*
** This is called every time the Multiprocessor Model
** changes state. This is most typically after the
** end of a simulation cycle.
**
** (non-Javadoc)
** @see com.cmpware.ide.IListener#handleEvent()
*/

public void handleEvent(int eventType) {
 int i;
 int j;
 int pc = 0;
 int rows;
 int cols;
 Processor p;
 text.setText("Program Counters:\n\n");
 /* Get the current multiprocessor size */
 rows = MpModel.getMultiprocessor().getRows();
 cols = MpModel.getMultiprocessor().getCols();

 for (i=0; i<rows; i++) {
 for (j=0; j<cols; j++) {

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 26

 /* Get a processor */
 p = MpModel.getMultiprocessor().get(i, j);

 /* Get the processor PC */
 pc = p.getPC();

 /* Print out the PC value */
 text.append("PC("+i+","+j+"): "+ Integer.toHexString(pc)+" \t");
 } /* end for(j) */
 text.append("\n");

 } /* end for(i) */
 } /* end handleEvent() */

/** The Text Widget for output */
private Text text = null;

} /* end class AllPCs */

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 27

Appendix B: fragment.xml / MANIFEST.MF Source Code

Fragment.xml:
<?xml version="1.0" encoding="UTF-8" ?>
<?eclipse version="3.0"?>
<fragment
 plugin-id=""
 plugin-version="">
 <extension
 id="com.yourcompany.ide"
 name="AllPCs"
 point="org.eclipse.ui.views">
 <view
 allowMultiple="false"
 category="com.cmpware.ide"
 class="com.yourcompany.ide.AllPCs"
 fastViewWidthRatio="33"
 icon="icons/Cmpware16x16.gif"
 id="com.yourcompany.ide.AllPCs"
 name="Show All PCs" />
 </extension>
</fragment>

MANIFEST.MF:
Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: AllPCs Fragment
Bundle-SymbolicName: AllPCs; singleton:=true
Bundle-Version: 2.0.3
Bundle-Vendor: Cmpware, Inc.
Fragment-Host: com.cmpware.ide;bundle-version="2.0.3"
Bundle-Localization: plugin
Export-Package: com.yourcompany.ide

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 28

Appendix C: feature.xml Source Code

<?xml version="1.0" encoding="UTF-8" ?>
<feature id="AllPCs_feature" label="AllPCs_feature" version="1.0.0" provider-

name="YourCompany, Inc.">
 <description>The All PCs Extension View</description>
 <copyright>Copyright (c) 2006 by Cmpware, Inc.</copyright>
 <license url="http://www.cmpware.com/Docs/EULA.pdf">See the Cmpware CMP-DK

license.</license>
 <url>
 <update label="AllPCs Update Site"

url="http://www.cmpware.com/AllPCsUpdate/" />
 </url>
 <plugin id="AllPCs" download-size="0" install-size="0" version="0.0.0"

fragment="true" unpack="false" />
</feature>

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

Extending the Cmpware CMP-DK Page 29

Appendix D: site.xml

<?xml version="1.0" encoding="UTF-8" ?>
<site>
 <description url="http://www.cmpware.com/AllPCsUpdate/">The AllPCs

extension example</description>
 <feature url="features/AllPCs_feature_1.0.0.jar" id="AllPCs_feature"

version="1.0.0" />
</site>

Version 1.0.0 (April 24, 2006)
Copyright © 2004-2006 Cmpware, Inc. All rights reserved.

