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Abstract  -  A  new  breed  of  high  performance  computing 
machines is  emerging which seeks to  make full  use of  the 
performance gains available from single chip multiprocessor 
or  multicore  devices.   These  systems  use  commercially 
available  devices,  and  in  some cases,  define  and  fabricate 
their own high performance multicore devices.  These devices 
are  in  turn  used  as   processing  nodes  in  parallel 
supercomputers.  This paper describes real world experiences 
involving  the  design  and  simulation  of  such  a  multicore 
device and of the supercomputer system using these devices. 
Particular emphasis is placed on early architectural simulation 
and lessons learned.

I.  INTRODUCTION

Large  scale  high  performance  computing,  or 
supercomputing, has gradually transitioned from a very 
small number of powerful centralized processors to a 
very  large  number  of  less  powerful  distributed 
processing nodes.   Recently, a new trend has emerged 
in the supercomputing field:  multicore multiprocessor 
supercomputers.   Because  modern  multiprocessors, 
including  supercomputers,  are  overwhelmingly  based 
on  commercial  desktop  microprocessors,  the  trend 
toward  multicore  microprocessors  in  the  commercial 
arena has naturally extend into the supercomputer field.

While the use of new multicore desktop multiprocessors 
in parallel supercomputers in inevitable, these are most 
often  viewed  as  simple  replacements  for  traditional 
uniprocessor devices.  This view is largely due of the 
low level of parallelism and lack of sophisticated tools 
for  these devices.   Currently,  dual  core  devices  have 
gone  mainstream  and  four  (quad)  core  devices  are 
currently on the horizon [1][[2][3][4].   Perhaps related 
to this low level of core parallelism, there has been a 
lack of new tools and techniques to fully exploit these 
multicore microprocessors.

Related  to  these  multicore  devices,  a  new  breed  of 
multiprocessor  machines  is  emerging  which  seeks  to 
make  full  use  of  the  potential  parallelism  and 
performance  gains  from  multicore  devices.   These 
systems  are  using  higher  performance  commercial 
multicore devices,  or  in some instances,  defining and 
fabricating  their  own  high  performance  multicore 
devices for use in parallel supercomputers.

These devices diverge from the evolutionary approach 
to multicore found in desktop microprocessors.  Instead 
of a relatively small number of powerful cores sharing a 
die,  these  new  devices  are  characterized  by  larger 
numbers of  cores,  with each core  often being a non-
traditional type of processing unit.  Such devices offer 
unprecedented  levels  of  performance  from a  general-
purpose programmable computation platform.  Because 
of  the  high  level  of  performance,  these  devices  are 
increasingly finding their way into large scale parallel 
supercomputers, either as the primary processing node 
or  as  an  adjunct  coprocessor  connected  to  the  main 
processing nodes.

Figure 1:  A multicore multiprocessor.

This paper describes real world experiences involving 
the design the simulation of such a high performance 
multicore device and of the supercomputer system using 
these  devices.   Specifically,  this  paper  is  concerned 
with the  early simulation of  this  architecture  and  the 
impact of simulation on the design effort.

While simulation of such large scale systems has not 
typically been undertaken, tools such as the  Cmpware 
CMP-DK [11] permit such systems to be modeled and 
analyzed with relatively little effort and at reasonably 
fast simulation rates.  This the Cmpware CMP-DK  also 
provides  a  built-in  display  environment  for  these 
models which allows accurate device and system level 
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information  to  be  gathered  and  analyzed,  often 
interactively.

This  combination  of  fast  and  flexible  simulation 
combined with rich system data displays permitted early 
analysis of  the  device  and  system architecture  which 
would not have been possible otherwise.  This led to the 
discovery of substantial architectural deficiencies for a 
popular class of problems that necessitated a redesign 
of  the  system.   The  ability  to  identify  such  system 
deficiencies  in  such  detail  at  such  an  early  stage  in 
development, before any device or system construction 
had begun has proven to be extremely valuable.

II.  MULTICORE DEVICES

While  many of  the  cluster-style  multiprocessors  have 
begun to use the new generation of multicore desktop 
microprocessors, this is mostly an inevitable side effect 
of the migration to multicore devices by microprocessor 
manufacturers.  Since these platforms have committed to 
whatever high performance solution is  made available 
by the large desktop microprocessor manufacturers, the 
adoption of multicore microprocessors is not necessarily 
one of choice.  In fact, it will be interesting to see over 
time how these new architectures are used in large scale 
systems.  The multiprocessor  aspects of these devices 
will  require  special  software  support  to  be  used 
effectively.  Currently the level of software support for 
these multicore devices is relatively low.

While  desktop  microprocessor  manufacturers  such  as 
Intel, Sun and Advanced Micro Devices are gradually 
edging  into  multicore  architectures,  several  smaller 
companies  are  building  more  aggressively  parallel 
multicore  devices  with  dozens  or  even  hundreds  of 
processing units of a single device.

The multicore approach taken by established companies 
like  Sun,  Advanced  Micro  Devices  and  Intel  are 
necessarily evolutionary.   There is a  massive installed 
base of software that must run, unmodified, on whatever 
the next-generation microprocessor offering from these 
companies happens to be.  Essentially running existing 
operating systems such as Microsoft  Windows and its 
applications is the only requirement of these devices.

Unfortunately, these desktop multicore devices provide 
a  clear  break  with  the  decades  long  tradition  of 
uniprocessor  solutions.   In  the  past,  new  transistor 
budgets  were  used  to  add  various  new  architectural 
features  to  accelerate  performance  or  perhaps  extend 
instruction sets.  But every new generation CPU devices 
made use of these newly available transistors to improve 
performance.   Over  time, the performance gains from 
increasingly  large  numbers  of  transistors  resulted  in 

diminishing  gains  in  performance.   But  so  long  as 
transistors were cheap and performance crucial, this was 
the road map all manufacturers followed

Figure 2:  Power for a traditional uniprocessor CPU.

The new multicore microprocessors, however, break the 
existing  programming  model  for  these  architectures. 
For the first time since the original x86 processor, for 
instance,  applications will not directly benefit from the 
doubling  of  the  number  of  transistors  in  this  new 
generation  of  Intel  and  AMD  devices.   All  of  the 
existing software is written for a single core and cannot 
directly take advantage of the second core without being 
recompiled, and perhaps re-designed.

This  significant  break  with  the  past  was  not  done 
altogether  willingly.   Extending  uniprocessor 
performance was abandoned simply because it  was no 
longer  feasible.   The  primarily  problem  was  power 
consumption and the associated heat generation.

III.  POWER CONSUMPTION

With modern unicore microprocessors approaching, and 
even  surpassing,  100  Watts,  change  was  inevitable. 
This amount of heat cannot be comfortably be dissipated 
in  traditional  air-cooled  workstations  and  personal 
computers.  To make matters worse,  the trends in the 
underlying semiconductor  technology had this  number 
growing non-linearly.

The  main  goal  of  multicore  devices  was  to  provide 
increased  performance  without dramatically increasing 
power consumption.  This all hinges on the relationship 
between clock speed and device voltage.   To increase 
the  clock  speed,  a  non-linear  increase  in  voltage  is 
required.  This, in turn, produces a non-linear increase in 
power consumption.  Since it was no longer feasible to 



use  the  extra  transistor  budgets  to  help  increase  the 
clock rate, they were used to create multiple cores, thus 
increasing  the  performance  by  increasing  the 
parallelism.   As figures  2  and  3  indicate,  a  dramatic 
decrease  in  power  consumption  can  be  achieved  for 
identical  levels  of  raw performance using a multicore 
approach.

Intel,  Advanced  Micro  Devices  and  Sun  took  their 
existing designs and replicated them as multiple cores. 
This was a simple approach and provided some level of 
software compatibility.  Code that ran on the previous 
generation of uniprocessor devices could still run on a 
multicore device -- it  would just  do so using a single 
core, or less than half of the device.  Performance gains 
were no longer automatic.

IV.  THE NEW PROGRAMMING MODEL

A group of smaller companies have recognized that once 
the  basic  uniprocessor  programming  model  had  been 
broken, a re-evaluation of existing architectures may be 
in order.  All of the millions of transistors used over the 
previous decades in caches, buffers, and other assorted 
hardware  used  to  increase  uniprocessor  performance 
were open to re-evaluation.   The basic question now 
would  be:   are  those  transistors  be  better  used  by 
increasing  the  number  of  cores?   While  the  large 
established  processor  manufacturers  could  not  easily 
make this  leap, several smaller companies have recently 
begun to manufacture devices containing dozens or even 
hundreds of simple processor cores.

The levels of raw performance of these new aggressively 
multicore  devices  turn out  to  be  very high.   Because 
hundreds of cores can be packed into a single device, 
orders  of magnitude increases in raw performance are 
possible.   Of  course,  the  primary  issue  with  these 
devices  is  the  software.   Software  must  be  written to 
take advantage of these parallel computation resources.

These devices are particularly attractive to designers of 
supercomputers primarily because of their high level of 
performance.   And  since  supercomputing  software 
already tends to address issues of parallel execution, the 
programming  model  for  these  emerging  devices  is 

already  familiar  to  the  audience.   For  these  reasons, 
these devices are rapidly finding adoption in the newer 
large scale multiprocessors [6][7][8].   Companies such 
as ClearSpeed as well as the Cell architecture from the 
IBM / Sony / Toshiba consortium are early adopters of 
the multicore trend, but more recent announcements by 
emerging  architectures  promise  to  push  this  level  of 
parallelism even further.

In general,  none of these new devices  have provided 
substantial  support  for  the  multiprocessor  design 
process.  Using these devices in large numbers tends to 
be significantly more difficult than existing approaches 
using standard desktop microprocessors.  While the raw 
performance is higher, it  will tend to depend more on 
the  structure  of  the  software.   And  when  multiple 
devices  are  used,  issues  concerning  communication 
balance across devices becomes even more important.

While the new large scale multicore devices are gaining 
in popularity with supercomputer designers, most were 
not built with large scale multiprocessing in mind.  For 
this reason, exploration of the use of a custom multicore 
device  designed  explicitly  to  support  large  scale 
multiprocessor systems has been investigated.

This  paper  is  concerned  with  an  ongoing  project  to 
design such a machine.  Because the design in still  in 
progress and has not been formally announced as of the 
writing of this paper, it will not describe specific details 
of the architecture, but will concentrate primarily on the 
simulation of the architecture during early development.

While somewhat unusual for a large, high-performance 
system,  the  ability  to  simulate  the  system  and  run 
application software led to  important  insights  into the 
functionality of the system.  Finally, because the system 
has  not  been  announced,  it  will  be  referred  to  (for 
brevity)  in  this  article  as  Multicore  Multiprocessor 
Supercomputer, or MMS-1, for convenience.

TABLE 1

Simulation level over time.



Figure 3:  Power for a multicore CPU.

V.  THE MMS-1 DEVICE AND SYSTEM DESIGN

The  MMS-1  design  is  targeted  specifically  at  matrix 
computations.   Because  these  are  popular 
representations  for  many  supercomputer  algorithms, 
dedicating  hardware  and  networking  resources  to  this 
class  of  problems  is  viewed  as  a  way  to  provide 
significant performance gains.   In addition, the use of 
multicore  devices  promises  to  increase  the  system 
performance  dramatically  while  keeping  power 
consumption  relatively  low.   Because  power 
consumption  is  becoming  the  limiting  factor  in 
supercomputer design, with power consumption in large 
systems  measured  in  mega  Watts,  lower  power 
consumption becomes very attractive.  Reducing power 
consumption  can  reduce  system  cost  due  to  reduced 
cooling  needs,  while  lower  operating  costs  and 
increasing reliability.

The general architecture of the MMS-1 is defined to be 
a 2D array of processors with floating point capability. 
These processors  are interconnected  by a 2D toroidal 
mesh network.  While there are many other significant 
details of the architecture, discussion of these features is 
not  necessary  to  the  discussion  of  the  simulation 
experiences and will be left to other publications.
One choice in the  definition of  the architecture has  a 
direct impact on the simulation model.  The array and 
device  sizes  of  the  MMS-1  are  not  defined  as  fixed 
values, but are left as parameters.  Clearly, the number 
of cores per device is dependent on the implementation 
technology,  and  the  number  of  devices  per  system 
depends on the configuration.  The goal was to define a 
system that physically and logically could accommodate 
a large range of matrix sizes.

Figure 4:  The Cmpware CMP-DK multiprocessor model.

In particular, an FPGA prototype of some small number 
of  processing  elements  would  also  be  implemented, 
primarily  to  aid  in  the  hardware  verification  process, 
although  such  FPGA  implementations  could 
conceivably also be used as the computation platform in 
some systems.

While it is typical to perform simulations of hardware, 
system  level  simulation  has  only  recently  become 
available.  And, primarily due to the processing power 
required,  simulation  of  large  scale  multiprocessors  is 
considered somewhat unusual.   Initially,  simulation of 
the  multicore  device  using  the  Cmpware  CMP-DK 
toolkit  was investigated.   It  was quickly realized  that 
because of the parameterized nature of the architecture, 
simulating the multicore array on a larger scale would 
also be identical to simulating the entire multiprocessor 
system.

VI.  MODELING WITH THE CMPWARE CMP-DK

The  Cmpware CMP-DK is  a simulation and software 
development  environment  specifically  for  multicore 
devices.  The  Cmpware CMP-DK is typically used to 
construct  a  simulation  model  of  the  multiprocessor 
early in development.  In general, these models consist 
of  an  array  of  traditional  microprocessor  cores 
connected by some interconnection network fabric.

The  Cmpware  CMP-DK address  the  problems  of 
simulating such systems by operating at a higher level 
than most traditional  simulation tools.   While  today's 
circuit design tools operate at the gate or register level, 
such granularity is both difficult to model and slow to 
execute.   The  Cmpware environment takes simulation 
to a  higher level  and defines the basic  computational 



element as a 'processor'.  This processor is typically a 
standard  microprocessor  core,  and  the  Cmpware 
environment  comes  with  several  standard  models, 
including  MIPS-32 or  Sparc-8 and  NIOS II.   While 
standard  models are useful,  custom processor  models 
can be easily constructed, typically in just a few hours. 
And  while  support  for  traditional  microprocessors  is 
provided, a 'processor' can be anything which has inputs 
and outputs and a clock.  This permits 'hardwired' cores 
to  be  modeled  and  mixed  with  other  cores  in  a 
multiprocessor.

As part of the processor model, memory can be defined 
to  be any size and may also exist  in multiple  banks. 
Non-contiguous memory banks and shared memory in 
various configurations is also supported.

While 'processors' are the basic computational element, 
'links' are used to connect these processors.  A link is 
defined as a  communication channel with one source 
and one or more destinations.  These channels can be of 
any bit width and may have handshaking control or be 
'open loop' as in hardware pipelines.  Links may also 
have state and may implement a shared register or even 
a  FIFO.   Any communication  mechanism fitting  this 
high  level  model  can  be  simulated  in  the  Cmpware 
CMP-DK.

Because the core of the MMS-1 was relatively simple, 
the model for the core was created in significantly less 
than one day.  And because the torus network model is 
one  of  the  standard  network  model  options  in  the 
Cmpware CMP-DK, there was no work to do initially 
modeling the network.  It should be mentioned that the 
existing network model  consists  of just  over  a  dozen 
lines of highly repetitive code (implementing the north, 
south, east and west links are similar) and the processor 
model for the MMS-1, with its limited instruction set, 
was approximately 150 lines of code.

This model was imported into the  Cmpware CMP-DK 
Eclipse-based  user  interface.   This  provides  a 
multiprocessor debugger-like view into the architecture, 
supplying various views of state information at both the 
device and source code level.  This interface comes for 
'free'  after  developing  the  model.   Rather  than 
constructing displays and integrating them into an IDE 
as  a  separate  effort,  the  Cmpware  CMP-DK takes 
information embedded in the multiprocessor model and 
uses  it  used  to  dynamically  drive  the  interface, 
providing  a  reliable  and  consistent  view  of  the 
architecture, even as it changes from version to version.

Figure  5:    The  Cmpware  CMP-DK Integrated  Development 
Environment (IDE) and the MMS-1 model.

Since this was a completely new architecture, even the 
most  basic  software  development  tools  had  to  be 
constructed.   An  experimental  tool  from  Cmpware 
called AutoModel was used to produce a simple stand-
alone assembler and disassembler from the architectural 
description in the model.  This was used to construct 
early  test  programs,  which  were  loaded  into  the 
multiprocessor model and executed.

The  AutoModel data-driven model and tools approach 
is somewhat slower than the hand-crafted models by a 
factor  of  approximately 5x,  but  the  ability to  rapidly 
have  tools  and  simulation  models  which  were 
completely in sync and guaranteed to be free of certain 
common types of programming errors proved to be very 
useful.   It  permitted  very  rapid  cycling  of  design 
changes without requiring communication, specification 
and implementation of supporting tools to program the 
architecture.   This  permitted  a  much wider  range  of 
experimentation  than  would  have  otherwise  been 
possible.

VIII.  THE MMS-1 SIMULATION EXPERIENCE

While  the  SIMD  control  structure  was  still  under 
design, the model implemented a small local memory 
on each processor and loaded each of these memories 
with  identical  code.   While  the  model  was  clearly 
MIMD  in  this  case,  loading  identical  code  to  each 
processing node and having the processors execute the 
same  instructions  in  lock-step  effectively  emulated  a 
SIMD machine.  This approach was crucial to pressing 
forward  with  software  development  and  system test, 
even as the system details were still under active design.

Performance of the simulation of such a large system is 
also  a  concern.   While  the  simulation  of  complex 
microprocessors can be extremely slow, the relatively 
simple  cores  used  by  the  MMS-1  and  other  similar 



multicore  devices  generally  eliminate  these  simulator 
performance  issues.   Processors  typically  execute  at 
between one and two million cycles per second.  This 
lets relatively complex code execute for relatively long 
runs  and  relatively large  multicore  systems.   For  the 
MMS-1,  a  16  x 16  array (256  processors)  was most 
often  used  for  experimentation,  but  this  was  easily 
modified.   The  array size  was controlled  by a single 
parameter which can be changed in the IDE and would 
generate a new model on on the order of one second, 
somewhat longer for very large arrays.

It should be mentioned that much of the choice for the 
16 x 16 array for testing and experimentation was not 
due  to  the  performance  of  the  simulation  model. 
Performance  was still  interactive  with this  size  array 
and larger sizes were sometimes used.  The choice was 
primarily done because larger size arrays added little if 
any  valuable  information  to  the  investigations  being 
performed and often only served only to complicate the 
modeling process.

While  the  Cmpware simulation  models  operate  at  a 
higher  level  than other  simulation environments,  they 
are still  very much tied to the underlying architecture 
and  realistically  models  the  system  at  the  hardware 
level.   One  result  of  this  is  that  the  mechanism for 
loading  code  and  data  quickly  came  under  scrutiny. 
One alternative was to use the existing communication 
network to perform this operation.  Other techniques to 
directly  address  processors  and  their  internal  state, 
including the use of JTAG-style debug loading of data 
was discussed.

While  these  details  were  being  addressed,  the  model 
was  quickly  fitted  with  a  'controller'  node,  which 
emulated  dedicated  hardware  used to  'poke'  data  into 
processor memory and registers.  While this specialized 
node  was  only  done  to  move  software  development 
further  along,  it  also  had  an  impact  on  architectural 
discussions.

Finally,  one  relatively  small  point  concerning  the 
Cmpware displays  emerged.   While  the  Cmpware 
toolkit  was essentially integer-based, the MMS-1 was 
using a  large  number  of  floating point  registers.  The 
default  Cmpware displays would show these values as 
integers, or at best as hexadecimal numbers.  While that 
was acceptable, particular at the early stages of design, 
it quickly became tedious to convert the data formats to 
and from floating point.

Fortunately,  the  Cmpware  CMP-DK supports  custom 
displays.  In less than 20 lines of code, a new register 
display was created  and  integrated  into  the  the  IDE. 
This  displayed all  of  the  floating point  registers  in  a 

standard  floating  point  format  and  immediately 
enhanced  the  productivity of  the  programmers.   This 
additional  display  took  much  less  than  one  day  to 
implement.   While  this  display was relatively simple 
and closely resembled existing displays, new displays 
of any complexity can be integrated into the Cmpware 
CMP-DK.   Additionally,  these  externally  created 
displays are 'pluggable' and can easily be bundled and 
deployed.  In  fact,  this  display  was  deployed  on  an 
internal web server and downloaded and integrated by 
software  developers  as  an  Eclipse  software  upgrade, 
without  any  intervention  from the  developers  of  the 
display.

Perhaps  the  most  significant  event  of  the  MMS-1 
simulation  was  the  uncovering  of  a  significant 
imbalance  between  the  system  processing  capability 
and  the  input  and  output  requirements.   While  such 
balance is  important,  it  is  typically highly application 
dependent.   In  the  case  of  the  MMS-1,  it  was 
discovered that certain matrix operations would lead to 
significant data starvation and a low utilization of the 
processor resources.

While such problems are common in high performance 
computing,  they  are  also  difficult  to  analyze  and 
discover, no matter how obvious they sometimes seem 
in hindsight.   It  was only the  ability to  simulate  the 
architecture  at  the  software  /  application  level  that 
uncovered  this  significant  architectural  problem. 
Several  alternatives increasing the I/O bandwidth and 
rearranging the  computational  resources  are  currently 
under  investigation.    Unfortunately,  some  of  the 
potential  solutions involve architecture details  not yet 
disclosed at the time of the authorship of this paper.

IX.  CONCLUSIONS

This paper has discussed the simulation of the MMS-1 
multicore  multiprocessor  supercomputer  using  the 
Cmpware CMP-DK toolkit.  While originally aimed at 
the simulation and software development for multicore 
devices,  it  was  quickly  realized  that  a  complete 
multiprocessor  system could  be  adequately simulated. 
While  such  large  scale  systems  are  typically  not 
simulated  at  the  application  /  software  level,  this 
experience  was  extremely  valuable  in  guiding  the 
design,  and  in  one  case  even uncovered  a  significant 
architectural  deficiency.   Perhaps  what  made  the 
simulation experience so effective was that models were 
able to be developed and modified quickly and that a 
complete  integrated  development  environment  was 
made available.  This architectural analysis and software 
development environment was especially useful because 
it was available so early in the design process.
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