
Simulating a Multicore Supercomputer

Steven A. Guccione
Cmpware, Inc.

Austin, TX (USA)
Steven.Guccione@cmpware.com

Abstract - A new breed of high performance computing
machines is emerging which seeks to make full use of the
performance gains available from single chip multiprocessor
or multicore devices. These systems use commercially
available devices, and in some cases, define and fabricate
their own high performance multicore devices. These devices
are in turn used as processing nodes in parallel
supercomputers. This paper describes real world experiences
involving the design and simulation of such a multicore
device and of the supercomputer system using these devices.
Particular emphasis is placed on early architectural simulation
and lessons learned.

I. INTRODUCTION

Large scale high performance computing, or
supercomputing, has gradually transitioned from a very
small number of powerful centralized processors to a
very large number of less powerful distributed
processing nodes. Recently, a new trend has emerged
in the supercomputing field: multicore multiprocessor
supercomputers. Because modern multiprocessors,
including supercomputers, are overwhelmingly based
on commercial desktop microprocessors, the trend
toward multicore microprocessors in the commercial
arena has naturally extend into the supercomputer field.

While the use of new multicore desktop multiprocessors
in parallel supercomputers in inevitable, these are most
often viewed as simple replacements for traditional
uniprocessor devices. This view is largely due of the
low level of parallelism and lack of sophisticated tools
for these devices. Currently, dual core devices have
gone mainstream and four (quad) core devices are
currently on the horizon [1][[2][3][4]. Perhaps related
to this low level of core parallelism, there has been a
lack of new tools and techniques to fully exploit these
multicore microprocessors.

Related to these multicore devices, a new breed of
multiprocessor machines is emerging which seeks to
make full use of the potential parallelism and
performance gains from multicore devices. These
systems are using higher performance commercial
multicore devices, or in some instances, defining and
fabricating their own high performance multicore
devices for use in parallel supercomputers.

These devices diverge from the evolutionary approach
to multicore found in desktop microprocessors. Instead
of a relatively small number of powerful cores sharing a
die, these new devices are characterized by larger
numbers of cores, with each core often being a non-
traditional type of processing unit. Such devices offer
unprecedented levels of performance from a general-
purpose programmable computation platform. Because
of the high level of performance, these devices are
increasingly finding their way into large scale parallel
supercomputers, either as the primary processing node
or as an adjunct coprocessor connected to the main
processing nodes.

Figure 1: A multicore multiprocessor.

This paper describes real world experiences involving
the design the simulation of such a high performance
multicore device and of the supercomputer system using
these devices. Specifically, this paper is concerned
with the early simulation of this architecture and the
impact of simulation on the design effort.

While simulation of such large scale systems has not
typically been undertaken, tools such as the Cmpware
CMP-DK [11] permit such systems to be modeled and
analyzed with relatively little effort and at reasonably
fast simulation rates. This the Cmpware CMP-DK also
provides a built-in display environment for these
models which allows accurate device and system level

mailto:Steven.Guccione@cmpware.com

information to be gathered and analyzed, often
interactively.

This combination of fast and flexible simulation
combined with rich system data displays permitted early
analysis of the device and system architecture which
would not have been possible otherwise. This led to the
discovery of substantial architectural deficiencies for a
popular class of problems that necessitated a redesign
of the system. The ability to identify such system
deficiencies in such detail at such an early stage in
development, before any device or system construction
had begun has proven to be extremely valuable.

II. MULTICORE DEVICES

While many of the cluster-style multiprocessors have
begun to use the new generation of multicore desktop
microprocessors, this is mostly an inevitable side effect
of the migration to multicore devices by microprocessor
manufacturers. Since these platforms have committed to
whatever high performance solution is made available
by the large desktop microprocessor manufacturers, the
adoption of multicore microprocessors is not necessarily
one of choice. In fact, it will be interesting to see over
time how these new architectures are used in large scale
systems. The multiprocessor aspects of these devices
will require special software support to be used
effectively. Currently the level of software support for
these multicore devices is relatively low.

While desktop microprocessor manufacturers such as
Intel, Sun and Advanced Micro Devices are gradually
edging into multicore architectures, several smaller
companies are building more aggressively parallel
multicore devices with dozens or even hundreds of
processing units of a single device.

The multicore approach taken by established companies
like Sun, Advanced Micro Devices and Intel are
necessarily evolutionary. There is a massive installed
base of software that must run, unmodified, on whatever
the next-generation microprocessor offering from these
companies happens to be. Essentially running existing
operating systems such as Microsoft Windows and its
applications is the only requirement of these devices.

Unfortunately, these desktop multicore devices provide
a clear break with the decades long tradition of
uniprocessor solutions. In the past, new transistor
budgets were used to add various new architectural
features to accelerate performance or perhaps extend
instruction sets. But every new generation CPU devices
made use of these newly available transistors to improve
performance. Over time, the performance gains from
increasingly large numbers of transistors resulted in

diminishing gains in performance. But so long as
transistors were cheap and performance crucial, this was
the road map all manufacturers followed

Figure 2: Power for a traditional uniprocessor CPU.

The new multicore microprocessors, however, break the
existing programming model for these architectures.
For the first time since the original x86 processor, for
instance, applications will not directly benefit from the
doubling of the number of transistors in this new
generation of Intel and AMD devices. All of the
existing software is written for a single core and cannot
directly take advantage of the second core without being
recompiled, and perhaps re-designed.

This significant break with the past was not done
altogether willingly. Extending uniprocessor
performance was abandoned simply because it was no
longer feasible. The primarily problem was power
consumption and the associated heat generation.

III. POWER CONSUMPTION

With modern unicore microprocessors approaching, and
even surpassing, 100 Watts, change was inevitable.
This amount of heat cannot be comfortably be dissipated
in traditional air-cooled workstations and personal
computers. To make matters worse, the trends in the
underlying semiconductor technology had this number
growing non-linearly.

The main goal of multicore devices was to provide
increased performance without dramatically increasing
power consumption. This all hinges on the relationship
between clock speed and device voltage. To increase
the clock speed, a non-linear increase in voltage is
required. This, in turn, produces a non-linear increase in
power consumption. Since it was no longer feasible to

use the extra transistor budgets to help increase the
clock rate, they were used to create multiple cores, thus
increasing the performance by increasing the
parallelism. As figures 2 and 3 indicate, a dramatic
decrease in power consumption can be achieved for
identical levels of raw performance using a multicore
approach.

Intel, Advanced Micro Devices and Sun took their
existing designs and replicated them as multiple cores.
This was a simple approach and provided some level of
software compatibility. Code that ran on the previous
generation of uniprocessor devices could still run on a
multicore device -- it would just do so using a single
core, or less than half of the device. Performance gains
were no longer automatic.

IV. THE NEW PROGRAMMING MODEL

A group of smaller companies have recognized that once
the basic uniprocessor programming model had been
broken, a re-evaluation of existing architectures may be
in order. All of the millions of transistors used over the
previous decades in caches, buffers, and other assorted
hardware used to increase uniprocessor performance
were open to re-evaluation. The basic question now
would be: are those transistors be better used by
increasing the number of cores? While the large
established processor manufacturers could not easily
make this leap, several smaller companies have recently
begun to manufacture devices containing dozens or even
hundreds of simple processor cores.

The levels of raw performance of these new aggressively
multicore devices turn out to be very high. Because
hundreds of cores can be packed into a single device,
orders of magnitude increases in raw performance are
possible. Of course, the primary issue with these
devices is the software. Software must be written to
take advantage of these parallel computation resources.

These devices are particularly attractive to designers of
supercomputers primarily because of their high level of
performance. And since supercomputing software
already tends to address issues of parallel execution, the
programming model for these emerging devices is

already familiar to the audience. For these reasons,
these devices are rapidly finding adoption in the newer
large scale multiprocessors [6][7][8]. Companies such
as ClearSpeed as well as the Cell architecture from the
IBM / Sony / Toshiba consortium are early adopters of
the multicore trend, but more recent announcements by
emerging architectures promise to push this level of
parallelism even further.

In general, none of these new devices have provided
substantial support for the multiprocessor design
process. Using these devices in large numbers tends to
be significantly more difficult than existing approaches
using standard desktop microprocessors. While the raw
performance is higher, it will tend to depend more on
the structure of the software. And when multiple
devices are used, issues concerning communication
balance across devices becomes even more important.

While the new large scale multicore devices are gaining
in popularity with supercomputer designers, most were
not built with large scale multiprocessing in mind. For
this reason, exploration of the use of a custom multicore
device designed explicitly to support large scale
multiprocessor systems has been investigated.

This paper is concerned with an ongoing project to
design such a machine. Because the design in still in
progress and has not been formally announced as of the
writing of this paper, it will not describe specific details
of the architecture, but will concentrate primarily on the
simulation of the architecture during early development.

While somewhat unusual for a large, high-performance
system, the ability to simulate the system and run
application software led to important insights into the
functionality of the system. Finally, because the system
has not been announced, it will be referred to (for
brevity) in this article as Multicore Multiprocessor
Supercomputer, or MMS-1, for convenience.

TABLE 1

Simulation level over time.

Figure 3: Power for a multicore CPU.

V. THE MMS-1 DEVICE AND SYSTEM DESIGN

The MMS-1 design is targeted specifically at matrix
computations. Because these are popular
representations for many supercomputer algorithms,
dedicating hardware and networking resources to this
class of problems is viewed as a way to provide
significant performance gains. In addition, the use of
multicore devices promises to increase the system
performance dramatically while keeping power
consumption relatively low. Because power
consumption is becoming the limiting factor in
supercomputer design, with power consumption in large
systems measured in mega Watts, lower power
consumption becomes very attractive. Reducing power
consumption can reduce system cost due to reduced
cooling needs, while lower operating costs and
increasing reliability.

The general architecture of the MMS-1 is defined to be
a 2D array of processors with floating point capability.
These processors are interconnected by a 2D toroidal
mesh network. While there are many other significant
details of the architecture, discussion of these features is
not necessary to the discussion of the simulation
experiences and will be left to other publications.
One choice in the definition of the architecture has a
direct impact on the simulation model. The array and
device sizes of the MMS-1 are not defined as fixed
values, but are left as parameters. Clearly, the number
of cores per device is dependent on the implementation
technology, and the number of devices per system
depends on the configuration. The goal was to define a
system that physically and logically could accommodate
a large range of matrix sizes.

Figure 4: The Cmpware CMP-DK multiprocessor model.

In particular, an FPGA prototype of some small number
of processing elements would also be implemented,
primarily to aid in the hardware verification process,
although such FPGA implementations could
conceivably also be used as the computation platform in
some systems.

While it is typical to perform simulations of hardware,
system level simulation has only recently become
available. And, primarily due to the processing power
required, simulation of large scale multiprocessors is
considered somewhat unusual. Initially, simulation of
the multicore device using the Cmpware CMP-DK
toolkit was investigated. It was quickly realized that
because of the parameterized nature of the architecture,
simulating the multicore array on a larger scale would
also be identical to simulating the entire multiprocessor
system.

VI. MODELING WITH THE CMPWARE CMP-DK

The Cmpware CMP-DK is a simulation and software
development environment specifically for multicore
devices. The Cmpware CMP-DK is typically used to
construct a simulation model of the multiprocessor
early in development. In general, these models consist
of an array of traditional microprocessor cores
connected by some interconnection network fabric.

The Cmpware CMP-DK address the problems of
simulating such systems by operating at a higher level
than most traditional simulation tools. While today's
circuit design tools operate at the gate or register level,
such granularity is both difficult to model and slow to
execute. The Cmpware environment takes simulation
to a higher level and defines the basic computational

element as a 'processor'. This processor is typically a
standard microprocessor core, and the Cmpware
environment comes with several standard models,
including MIPS-32 or Sparc-8 and NIOS II. While
standard models are useful, custom processor models
can be easily constructed, typically in just a few hours.
And while support for traditional microprocessors is
provided, a 'processor' can be anything which has inputs
and outputs and a clock. This permits 'hardwired' cores
to be modeled and mixed with other cores in a
multiprocessor.

As part of the processor model, memory can be defined
to be any size and may also exist in multiple banks.
Non-contiguous memory banks and shared memory in
various configurations is also supported.

While 'processors' are the basic computational element,
'links' are used to connect these processors. A link is
defined as a communication channel with one source
and one or more destinations. These channels can be of
any bit width and may have handshaking control or be
'open loop' as in hardware pipelines. Links may also
have state and may implement a shared register or even
a FIFO. Any communication mechanism fitting this
high level model can be simulated in the Cmpware
CMP-DK.

Because the core of the MMS-1 was relatively simple,
the model for the core was created in significantly less
than one day. And because the torus network model is
one of the standard network model options in the
Cmpware CMP-DK, there was no work to do initially
modeling the network. It should be mentioned that the
existing network model consists of just over a dozen
lines of highly repetitive code (implementing the north,
south, east and west links are similar) and the processor
model for the MMS-1, with its limited instruction set,
was approximately 150 lines of code.

This model was imported into the Cmpware CMP-DK
Eclipse-based user interface. This provides a
multiprocessor debugger-like view into the architecture,
supplying various views of state information at both the
device and source code level. This interface comes for
'free' after developing the model. Rather than
constructing displays and integrating them into an IDE
as a separate effort, the Cmpware CMP-DK takes
information embedded in the multiprocessor model and
uses it used to dynamically drive the interface,
providing a reliable and consistent view of the
architecture, even as it changes from version to version.

Figure 5: The Cmpware CMP-DK Integrated Development
Environment (IDE) and the MMS-1 model.

Since this was a completely new architecture, even the
most basic software development tools had to be
constructed. An experimental tool from Cmpware
called AutoModel was used to produce a simple stand-
alone assembler and disassembler from the architectural
description in the model. This was used to construct
early test programs, which were loaded into the
multiprocessor model and executed.

The AutoModel data-driven model and tools approach
is somewhat slower than the hand-crafted models by a
factor of approximately 5x, but the ability to rapidly
have tools and simulation models which were
completely in sync and guaranteed to be free of certain
common types of programming errors proved to be very
useful. It permitted very rapid cycling of design
changes without requiring communication, specification
and implementation of supporting tools to program the
architecture. This permitted a much wider range of
experimentation than would have otherwise been
possible.

VIII. THE MMS-1 SIMULATION EXPERIENCE

While the SIMD control structure was still under
design, the model implemented a small local memory
on each processor and loaded each of these memories
with identical code. While the model was clearly
MIMD in this case, loading identical code to each
processing node and having the processors execute the
same instructions in lock-step effectively emulated a
SIMD machine. This approach was crucial to pressing
forward with software development and system test,
even as the system details were still under active design.

Performance of the simulation of such a large system is
also a concern. While the simulation of complex
microprocessors can be extremely slow, the relatively
simple cores used by the MMS-1 and other similar

multicore devices generally eliminate these simulator
performance issues. Processors typically execute at
between one and two million cycles per second. This
lets relatively complex code execute for relatively long
runs and relatively large multicore systems. For the
MMS-1, a 16 x 16 array (256 processors) was most
often used for experimentation, but this was easily
modified. The array size was controlled by a single
parameter which can be changed in the IDE and would
generate a new model on on the order of one second,
somewhat longer for very large arrays.

It should be mentioned that much of the choice for the
16 x 16 array for testing and experimentation was not
due to the performance of the simulation model.
Performance was still interactive with this size array
and larger sizes were sometimes used. The choice was
primarily done because larger size arrays added little if
any valuable information to the investigations being
performed and often only served only to complicate the
modeling process.

While the Cmpware simulation models operate at a
higher level than other simulation environments, they
are still very much tied to the underlying architecture
and realistically models the system at the hardware
level. One result of this is that the mechanism for
loading code and data quickly came under scrutiny.
One alternative was to use the existing communication
network to perform this operation. Other techniques to
directly address processors and their internal state,
including the use of JTAG-style debug loading of data
was discussed.

While these details were being addressed, the model
was quickly fitted with a 'controller' node, which
emulated dedicated hardware used to 'poke' data into
processor memory and registers. While this specialized
node was only done to move software development
further along, it also had an impact on architectural
discussions.

Finally, one relatively small point concerning the
Cmpware displays emerged. While the Cmpware
toolkit was essentially integer-based, the MMS-1 was
using a large number of floating point registers. The
default Cmpware displays would show these values as
integers, or at best as hexadecimal numbers. While that
was acceptable, particular at the early stages of design,
it quickly became tedious to convert the data formats to
and from floating point.

Fortunately, the Cmpware CMP-DK supports custom
displays. In less than 20 lines of code, a new register
display was created and integrated into the the IDE.
This displayed all of the floating point registers in a

standard floating point format and immediately
enhanced the productivity of the programmers. This
additional display took much less than one day to
implement. While this display was relatively simple
and closely resembled existing displays, new displays
of any complexity can be integrated into the Cmpware
CMP-DK. Additionally, these externally created
displays are 'pluggable' and can easily be bundled and
deployed. In fact, this display was deployed on an
internal web server and downloaded and integrated by
software developers as an Eclipse software upgrade,
without any intervention from the developers of the
display.

Perhaps the most significant event of the MMS-1
simulation was the uncovering of a significant
imbalance between the system processing capability
and the input and output requirements. While such
balance is important, it is typically highly application
dependent. In the case of the MMS-1, it was
discovered that certain matrix operations would lead to
significant data starvation and a low utilization of the
processor resources.

While such problems are common in high performance
computing, they are also difficult to analyze and
discover, no matter how obvious they sometimes seem
in hindsight. It was only the ability to simulate the
architecture at the software / application level that
uncovered this significant architectural problem.
Several alternatives increasing the I/O bandwidth and
rearranging the computational resources are currently
under investigation. Unfortunately, some of the
potential solutions involve architecture details not yet
disclosed at the time of the authorship of this paper.

IX. CONCLUSIONS

This paper has discussed the simulation of the MMS-1
multicore multiprocessor supercomputer using the
Cmpware CMP-DK toolkit. While originally aimed at
the simulation and software development for multicore
devices, it was quickly realized that a complete
multiprocessor system could be adequately simulated.
While such large scale systems are typically not
simulated at the application / software level, this
experience was extremely valuable in guiding the
design, and in one case even uncovered a significant
architectural deficiency. Perhaps what made the
simulation experience so effective was that models were
able to be developed and modified quickly and that a
complete integrated development environment was
made available. This architectural analysis and software
development environment was especially useful because
it was available so early in the design process.

REFERENCES

[1] “The Future of Microprocessors”, David Patterson,
U. California at Berkeley, June 2001.
http://www.cs.berkeley.edu/~pattrsn/talks/NAE.ppt

[2] Chip Multiprocessing Resources:
http://www.princeton.edu/~jdonald/research/cmp/

[3] “Intel Demonstrates Breakthrough Processor
Design”, http://www.intel.com/pressroom/archive/
releases/20010828comp.htm, August 28, 2001.

[4] “AMD Announces Technology Milestone With Its
Multiple-Core Strategy”, http://www.amd.com/us-
en/Corporate/VirtualPressRoom/
0,,51_104_543~86455,00.html, June 14, 2004.

[5] ”Sun Drives Multithreaded Processor Innovation
with New UltraSPARC IV+”,
http://www.sun.com/smi/Press/sunflash/2004-
10/sunflash.20041005.2.html, October 5, 2004.

[6] Aaron Ricadela, "In Depth: Supercomputers Get A
Speed Boost From Specialized Chips", Information
Week, http://www.informationweek.com/story/
showArticle.jhtml?articleID=190400264, July 17,
2006.

[7] "ClearSpeed Teams with IBM to Deliver Hybrid
Clusters", HPC Wire, http://www.hpcwire.com/hpc/
707056.html, June 27, 2006.

[8] John Markoff, "I.B.M. to Build Supercomputer
Powered by Video Game Chips", New York Times,
http://www.nytimes.com/2006/09/07/technology/07c
ompute.html, Sept 7, 2006.

[9] W. Daniel Hillis. The Connection Machine. The
MIT Press, Cambridge, MA, 1985.

[10] “Eclipse Platform Technical Overview”,
http://www.eclipse.org/whitepapers/eclipse-
overview.pdf, February, 2003.

[11] Cmpware, Inc. http://www.cmpware.com/, 2006.

http://www.princeton.edu/~jdonald/research/cmp/
http://www.cs.berkeley.edu/~pattrsn/talks/NAE.ppt

