

Simulating a Multicore Supercomputer

Steven A. Guccione Cmpware, Inc.

Copyright (c) 2006 Cmpware, Inc.

Supercomputers 2006

- Mostly multiprocessors
- Few Cray-style vector machines
- Approximately 10,000 100,000 processors
- Approximately 100 1000 TFLOPS Linpack
- Standard desktop CPUs (80W)
- Power estimate: approx. 1 10 MegaWatts
- Power the limiting system parameter
- See: http://www.top500.org/

Multicore Processors

- Thousands of processors on a die possible
- High performance: Thousands of MFLOPs
- Simple HW design
- Simple HW verification
- Flexible
- Scalable
- Reprogrammable
- <u>Reduces power</u>

Power and Multicore

Copyright (c) 2006 Cmpware, Inc.

Multicore Multiprocessor Supercomputer (MMS-1)

- Initial architecture:
 - Standard 32-bit floating point support
 - SIMD control
 - Mesh (2D)
 - Matrix 'macro' instructions
- Cores per device
 - Technology dependent
 - Independent of device architecture
- Simulated with the Cmpware CMP-DK

Cmpware Modeling Approach

- Models and simulates at a higher level
- Components are processors and channels
- Simpler to model, modify, mix and match
- Follows the ongoing trend in CAD tools

	SPICE	<u>Schematics</u>	<u>RTL</u>	<u>Cmpware</u>
Date:	1970s	1980s	1990s	2000s
Elements:	Transistor	Gate	Register	Processor
Connection:	Wire	Wire / Bus	Bus	Link

The Cmpware CMP-DK

- Models multiprocessor and interconnection
 architectures
 - Quickly build and program multiprocessors
 - Redefine multiprocessor / network in seconds
 - Simulation speed of 2M+ instructions / sec
- Executes software from standard tools
- Useful for software development / benchmarking
- Complete Eclipse development environment

Cmpware CMP-DK Building Blocks (cont.)

- Processors
 - Anything with inputs, outputs and a clock
 - Traditional microprocessor structures supported
 - Standard CPU models available (MIPS, Sparc,...)
 - Simple to implement
- Communication links
 - Variable bit width
 - Synchonized or unsynchronized
 - Buffered or unbuffered (FIFO)

Cmpware CMP-DK Building Blocks (cont.)

- Memories
 - Variable size
 - Big or Little Endian supported
 - Multiple banks supported
- Network
 - Just a collection of links
 - Supports different links (heterogeneous network)
 => Processors + memories + links =

Cmpware model

Cmpware CMP-DK Displays

- Standard multiprocessor interface
- Base on *Eclipse* platform
- Displays transparently driven by models:
 - Register values
 - Source code variables
 - Memory hex dump
 - Disassembly
 - Source code window
 - --> custom displays easily added

Cmpware CMP-DK

Copyright (c) 2006 Cmpware, Inc.

The MMS-1 Design Parameters

- Technology assumptions:
 - 30k gates FPU logic
 - @ 5 transistors per gate
 - @ 500 million transistors per device
 => over 3000 FPU cores per device
- Raw performance:
 - @ 500 Mhz
 - Power consumption similar to desktop CPU

==> 1.5 TFLOPs per device

The MMS-1 Model

🚝 Cmpware -	Init.dat - Eclipse SDK				
File Edit Navigate Search Project Run Window Help					
= 9 + 🙂 👄	😭 🚄 Cmpware 🌡 Java				
Variables 🛛 🖝 F	P Reg View 🛛 🍼 5 👘 🗆	CMP Array X Memory Disassembly C Source code			
r[n] Name	Value 🔺				
0 r0	0.0				
1 r1	1.0				
2 r2	Infinity				
3 r3	0.0				
4 r4	0.0				
5 r5	0.0				
6 r6	0.0				
7 r7	-1234.5677				
8 r8	0.0				
9 r9	0.0				
10 r10	0.0				
11 r11	0.0				
12 r12	0.0				
13 r13	0.0				
14 r14	0.0				
15 115	0.0				
10 110	0.0				
10 10	0.0				
10 110	0.0				
20 +20	0.0				
21 +21	0.0				
22 122	0.0				
23 123	0.0				
24 r24	0.0				
25 r25	0.0				
26 r26	0.0				
27 r27	0.0				
28 r28	0.0				
29 r29	0.0				
30 r30	0.0				
31 r31	0.0				
32 r32	0.0				
33 r33	0.0				
34 r34	0.0	Status 🛱 🔪 Power Meter MpMon			
35 r35	0.0	DicePED(0_4) colorted			
36 r36	0.0	Dicirco(0, T) Scienced			
37 r37	0.0	Controller(16.0) selected.			
38 r38	0.0	BiccPE1(15,0) selected.			
39 r39	0.0				
40 r40	0.0				
41 r41	0.0		F		

Simulation Experience

- Network and processor modeled in <1 day
- Simulated algorithms at the application level
- Used simple programming tools (assembler)
- Reduced version of processor simulated
 - Paramaterized change array size dynamically
 - 16 x 16 (= 256) cores used for experimentation
- Custom displays for floating point added
- Custom controller for data loading added

Input / Output Balance

- I/O imbalance in matrix operations identified
- The processor performance vs. I/O:
 - **2D** array = **N^2** processors
 - N^3 operations per matrix calculation
 - *N* cycles per matrix operation But ...
 - N^2 data elements per operation (I/O)

==> Processor utilization for Matrix ops = 1/N

Architectural Explorations

- Linear array (*N*) appropriate for matrix ops
 - High processor utilization (100%)
 - Balanced I/O
- Exploration of multithreading
 - More natural **NxN** programming model
 - More programming state / reduces I/O
- Exploration of different networks (3D torus)
- Examination of SIMD control structures

==> Changes to model done in minutes

Conclusions

- Multicore Supercomputing:
 - A new approach to large-scale computing
 - Lower power / Higher Performance / Inexpensive
 - Custom devices attractive
- Experiences with Simulation:
 - Major system-level deficiencies uncovered
 - New alternatives quickly explored
 - Software application level simulations crucial

==> Simulation of parallel supercomputer architectures feasible and useful