

Hardware / Software Tradeoffs in Multicore Architectures

Steven A. Guccione Cmpware, Inc.

CPU Transistor Budgets

- Approx. 1B transistors available (2008)
- 30+ years of Moore's Law
 - 8 -> 16 -> 32 -> 64 bit CPUs
 - Floating Point
 - Superscalar
 - Caches, buffers, caches and more caches
- Decreasing 'ROI' for new transistors
 - Little performance boost in last generation of single core CPUs

Transistors Per Year

CPUs in the New Millennium

- Single core architectures
 - Clock speeds plateauing (4 GHz)
 - Heat dissipation problems (100+ W)
 - Design costs (\$\$\$)
- Multicore architectures
 - Increase performance
 - Reduce power consumption
 - Simplify design

Multicore Architecture

- A new set of design parameters:
 - Core size
 - Number of cores
 - Core functionality
 - Core to core communcation
- **Q**: Do you want dual Pentium 4 or 1,000+ 80386 cores?

Relative CPU Sizes

Massively Multicore

- Smaller cores provide higher total MIPS
 - Using thousands of CPUs in parallel challenging
 - Software and tools issues
 - Memory and IO bandwidth questions
 - Application dependent
- 1,000 cores breaks software -- but so does dual core
- Q: How small should a core be?

FPGA CPUs

- Currently simple 1980s-style RISC CPUs
- Beginning to implement floating point
- Some multicore experimentation

Component	LUTs
CPU	800
FP Add	1,312
FP Multiply	1,380
FP Mac	2,772
FPU support*	850

Relative FPGA Core Sizes

- FP MAC almost 4x larger than CPU
- Q: CPU + MAC or 5x CPU?
- **Q**: 50x CPU + MAC or 250x CPU?

SW vs. HW FP

- Simple floating point code
- Run on Cmpware PowerPC simulator
- HW FP instructions vs. soft FP emulation

HW vs. SW Floating Point

- SW emulation 30x 40x slower than HW
- ... but most of the time spent packing / unpacking numbers into floating point format
- 'Unpacked' FP only 3.75x slower than HW

	Instructions Executed	Instructions Executed (-O3)
FP Hardware	12,024	4,015
FP SW (unpacked)	83,026	15,073
FP Software	336,254	165,010

HW vs. SW Floating Point

FP HW in Multicore

- SW FP 3.75x slower FP execution than HW
- ... but permits 5x CPU cores
- Opens up new optimization opportunities
- Performance available for non-floating point applications
- Other applications likely to have an even lower mix of FP / non-FP instructions

==> Software FP 'wins' in multicore

Conclusions

- CPU + FPU 5x size of CPU
- FPU software emulation optimized to 3.75x speed of HW FPU
- FP software beats FP hardware in multicore
 - Depends on instruction mix
 - Depends on ability to parallelize application
 - Depends on I/O and system parameters
- More simple cores favored
- SW beats special purpose HW in multicore