
Hardware / Software Trade offs in Multicore Architectures

Steven A. Guccione
Cmpware, Inc.

Austin, TX (USA)
Steven.Guccione@cmpware.com

Abstract  -  For  over  three  decades  microprocessor 
architectures  have  used  increasingly  large  numbers  of 
transistors to improve performance.  With the advent of 
multicore microprocessors,  it  is  not obvious how best to 
use  transistor  budgets.   The  choice  is  between  a  small 
number of complex cores or a larger number of simpler 
cores.   This  paper  investigates  the  specific  trade  offs 
between using a hardware floating point unit as opposed 
to  software  emulation  of  floating  point  using  a  larger 
number of cores.

I.  Introduction

The history of microprocessor architecture has been one 
of making use of ever increasing numbers of transistors 
to provide ever increasing levels of performance.  Over 
the course of several decades the number of transistors 
available to microprocessor architects could reliably be 
expected to double approximately every 18 months.

While the number of available transistors increased by 
several  orders  of  magnitude  over  this  period,  the 
performance gains achieved were much smaller.  New 
transistors  added  to  maturing  processor  architectures 
achieved smaller and smaller incremental performance 
gains over time until finally large numbers of transistors 
did little to increase performance for most applications.

Near the beginning of the new millennium a significant 
change  occurred  in  mainstream  microprocessor 
architecture.   New transistor  budgets  were  no  longer 
used  to  increase  performance  of  individual 
microprocessors; instead multiple processor cores were 
implemented on a single device.  This change occurred 
for a variety of reasons, but the effect on performance 
was  dramatic.   Suddenly  doubling  the  number  of 
transistors  could,  at  least  in  theory,  double  the 
performance of the device.

This was a situation that had not existed for decades. 
While  mainstream  microprocessor  architects  quickly 
embraced  this  multicore  approach  to  utilizing  new 
transistor budgets, the process has typically made use of 
existing  modern  processor  architectures  for  the 
individual cores.  Since it is clear that the last several 
generations of architectural  enhancements added  little 

in  performance  to  these  single  core  architectures,  it 
seems  obvious  that  re-deploying  these  transistors  to 
increase the number of cores, while reducing the size of 
the  cores  themselves,  should  result  in  an  increase  in 
overall performance.  What is not clear is how far back 
should the clock be turned in redeploying transistors in 
this manner.

This paper will focus on a very early hardware addition 
to the basic microprocessor  architecture:   the floating 
point  unit.   Issues  concerning  the  redeployment  of 
floating point unit transistors to increase the number of 
cores  in  a  multicore  device  is  explored.   Software 
emulation of floating point operation as well as similar 
techniques are examined.

II.  Multicore Architectures

All modern desktop and server microprocessor devices 
today are  multicore  devices.   It  is  expected  that  this 
trend will continue for some time, with the number of 
cores  continuing  to  increase,  approximately doubling 
with every new generation of microprocessor.

This  shift  to  multiple  core  microprocessors  has 
occurred for a variety of reasons, which are interrelated 
and happened to occur at approximately the same time 
in history.   First,  the increase in clock speed and the 
continued shrinking in transistors resulted in a situation 
where power consumption reached and even exceeded 
100W per device.  The trend in power consumption for 
high  performance  microprocessors  was  perhaps  the 
most  visible  and  urgent  reason  for  the  move  to 
multicore.  With multiple cores, the core voltages and 
clock speed could be reduced,  resulting in significant 
power  savings.   Two  lower  power,  but  lower 
performing,  cores  could  operate  at  a  combined 
performance level above that of a more powerful single 
core.

A second  reason  for  the  move  to  multicore  was  the 
plateauing  of  microprocessor  clock  speeds.   While 
related  to  power  consumption,  the  ability  of  modern 
CPU  architectures  to  support  clock  speed  above 
approximately  4  GHz  was  also  a  function  of  the 

mailto:Steven.Guccione@cmpware.com


underlying silicon technology.  In order to continue to 
provide  performance  gains  in  new  generations  of 
microprocessors, other techniques besides faster clocks 
were going to have to be employes.  Multicore was a 
convenient  method of boosting total  processor  device 
performance without having to raise clock speeds.

Finally,  one  significant  problem  with  modern 
microprocessor  design  was  the  cost.   Design  and 
verification of a large microprocessor was beginning to 
exceed  the  available  resources  of  even  the  largest 
corporations.  Multicore also addressed this problem by 
reusing a single smaller core multiple times in the same 
design.

As  Figure  1  indicates  the  number  of  transistors 
available  to  microprocessor  architects  continues  to 
grow, even as the ability to produce traditional single 
core  microprocessor  devices  became  less  and  less 
feasible.  After approximately the year 2000, multicore 
became  the  sole  method  of  continuing  to  keep 
microprocessor performance on the established 30  year 
track.

III.  FPGA CPUs

It is clear that the later generations of microprocessor 
devices used their transistor  budgets to provide fairly 
minimal increases in performance.  In fact, much of the 
performance  gains  in  modern  microprocessor  devices 
came  from increases  in  clock  speed  associated  with 
smaller transistors, not from the use of larger numbers 
of these smaller transistors.  While these performance 
gains  were  important  in  the  highly  competitive 
marketplace,  the  equation  changed  significantly  with 
the move to multicore.

While  in  early  microprocessors,  a  doubling  in  the 
number  of  transistors  could  result  in  a  doubling  of 
performance, only very small gains could be expected 

in recent generations.  But with mucticore promising a 
doubling  in  performance  for  a  doubling  in  transistor 
count,  a  re-evaluation  of  existing  multiprocessor 
architectures may be in order.  Such an investigation is 
potentially complicated due to the long history, lack of 
published information and potential  effects  of  rapidly 
changing technology.

Fortunately,  Field  Programmable  Gate Array (FPGA) 
technology presents an environment remarkably similar 
to  the  world  of  microprocessor  design  circa  1985. 
Simple 32-bit  RISC processors  are  beginning to  find 
their way in common usage and hardware floating point 
units are just beginning to be explored.  

Table 1 gives a list of microprocessor core components 
for FPGAs measured in the number of 4-input Look Up 
Tables (LUTs) used in each component.  LUTs are the 
basic  building  block  used  by  FPGAs  to  construct 
circuits.   This  provides  a  very  good  measure  of  the 
relative circuit size of these elements.

While there is currently no information available on a 
complete  floating  point  unit  Arithmetic  and  Logical 
Unit (ALU) in an FPGA, these numbers indicate that a 
Multiply-Accumulate  unit  (MAC) is  over  three  times 
the  size  of  the  CPU  core  itself.   In  a  multicore 
environment, the choice of hardware for such a system 
would  be  a  single  CPU  with  a  single  MAC  or 
approximately five CPUs.  In fact, the choice is likely 
to involve a larger number of cores.  The choice may be 
between  200  CPU plus  MAC cores  and  1,000  CPU 
cores.

IV. Floating Point Performance

With a hardware design choice of a single CPU plus a 
single  FPU versus  five  CPUs,  some measurement  of 
performance of these competing approaches is required. 
In this example, the goal is to first give an estimate of 
hardware  floating  point  performance  versus  software 
emulation of floating point.  Such a system may offer a 
wide variety of size versus performance points.  While 
floating point hardware often takes multiple cycles and 
has  the  ability  to  pipeline  certain  operations,  it  is 
conservatively  assumed  that  each  floating  point 
operation  is  independent  and  takes  place  in  a  single 

Figure 1: Transistor budgets for microprocessors.
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

1000

10000

100000

1000000

10000000

100000000

1000000000

Transistors

Table 1: FPGA core sizes.

Component LUTs
CPU 800
FP Add 1,312
FP Multiply 1,380
FP Mac 2,772
FPU support* 850



cycle.   These  two approaches  were  simulated  on  the 
Cmpware  CMP-DK  multicore  simulator  [8].   The 
results of these simulations are shown in Table 2.

Table  2  indicates  that  unoptimized  floating  point 
software  emulation  is  approximately 28  times  slower 
than the floating point hardware.

While this result is disappointing, attempts to use the 
compiler to optimize the code results in a factor of two 
improvement  in  performance  over  the  unoptimized 
floating point emulation.  Unfortunately it also results 
in  a  factor  of  three  increase  in  performance  for  the 
floating  point  hardware  architecture.   Overall,  the 
optimized  code  for  the  software  emulation  of  the 
floating point  operations  is  41  times slower  than the 
hardware.  These results are also shown in the graph in 
Figure 3.

Clearly  even  having  five  CPU  cores  operating  in 
parallel  is  no  match  for  a  factor  of  41  increase  in 
performance for floating point hardware.  These naive 
results  are,  however,  somewhat  unexpected.   Clearly 
floating  point  arithmetic,  particularly  a  multiply-
accumulate  operation,  is  not  over  40  times  more 
efficient  than  a  software  implementation.   So 
investigation into the underlying implementation is in 
order.

Both implementations used the same exact source code 
shown in Figure 2, which was a simple loop repeated 
1,000  times  containing  a  multiply-accumulate 
operation.   This  is  a  simple benchmark,  but  one that 

contains  a  high  ratio  of  floating  point  operations,  in 
order to draw a fair comparison.  Both were compiled 
with  the  Gnu   gcc  compiler  version  4.2.2  using  the 
standard libraries.

Upon  closer  investigation,  it  was  revealed  that  the 
floating point emulation libraries perform a substantial 
amount  of  work  keeping  the  data  in  a  rigid  floating 
point format.  This format is the standard IEEE format 
with a single bit for the sign, eight bits for the exponent 
and  the  remaining 23  bits  for  the  mantissa.   A final 
extra leading mantissa bit is always assumed to be '1'.

These  four  fields  are  'unpacked'  before  each  floating 
point  operation,  giving  the  integer  arithmetic  units 
access to the individual fields for the calculations.  In 
addition, after  each operation is complete,  the data is 
'packed' back into the IEEE format.  This pack / unpack 
combination is performed on each data item for  each 
floating point calculation performed.

Figure 3: Floating point performance.

This packing and unpacking of data adds nothing to the 
computation and is used simply to keep data in a format 
favored by the floating point hardware, which is not in 
use.  An alternative is to unpack the data once at  the 
beginning of the calculation and pack it back again into 
the  standard  format  when  it  is  required  by  other 
hardware or routines such as output.

The  middle  row in Table  2  gives  the  results  for  this 
'unpacked' calculation.  Unlike the naive implementation 
from the standard libraries, this version is approximately 
7  times  slower  than  the  floating  point  hardware 
implementation  in  the  unoptimized  version,  and  3.75 
times  slower  than  the  floating  point  hardware 
implementation in the optimized version.

This result indicates that  over  95% of the time in the 
emulation routines is spent packing and unpacking data. 

Softw are SW (unpacked) Hardw are
0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Unoptimized
Optimized

Table 2: Floating point hardware performance 
versus floating point emulation performance.

FP Hardware 12,024 4,015
FP SW (unpacked) 83,026 15,073
FP Software 336,254 165,010

Instr. 
Executed

Instr. Executed 
(-O3)

int main(int argc, char *argv[]) {
int  i;

   float  a = 10.5;
   float  b = 3.25;
   float  c = 0.0;
   
   for (i=0; i<1000; i++)
      c = c + (a * b);
          
   }  /* end main() */

Figure 2: The multiply-accumulate code.



Unfortunately,  this  type  of  code  is  very  difficult  for 
compilers to automatically optimize and currently has to 
be eliminated manually.  However, the ability to achieve 
only  a  factor  of  3.75  slowdown  in  a  multicore 
environment  that  has  five  times  the  number  of  cores 
appears to support the idea that even for floating point 
hardware,  more  cores  represent  a  higher  performance 
implementation than special purpose hardware.

V.  Conclusions

As  more  and  more  desktop,  server  and  embedded 
processors  move  to  multicore  architectures,  a  more 
thorough study of multicore architectural issues should 
be  undertaken.   Most  significant  are  the  combined 
questions of how many cores should a design use and 
how large should those cores be.

The CPU cores used in today's designs appear to arise 
more  from  convenience  than  any  other  measurable 
factor.  The most recent generation of cores is typically 
replicated  in  a  device  with  little  indication  of  other 
alternatives being explored.  This is problematic because 
the microprocessor core of today has undergone a very 
long process of development involving many orders of 
magnitude  increase  in  size  and  performance.   The 
changes to these cores along the way had a single goal: 
to  improve  serial  performance in  a  single core 
environment.

This  focus  on  improving  serial  performance  was 
understandable for single core devices. It preserved the 
programming model and kept legacy software operating 
on  subsequent  generations  of  devices.   But  once  the 
break  with  uniprocessing  has  been  made  and  the 
programming model broken, many of the architectural 
decisions made to create these cores come into question.

In this paper we explored some very early decisions in 
microprocessor history:  the addition of a floating point 
unit.   This  occurred  somewhere  in the middle of  this 
history of  microprocessor  development,  approximately 
halfway  between  the  original  Intel  4004  and  today's 
quad core devices.

Close examination indicates that even for simple code 
with very high proportions of floating point operations, 
the use of special  purpose hardware for floating point 
operations may not be warranted.  The ability to perform 
such  operations  in  software  using  simpler  integer 
operations appears to be more efficient  in a multicore 
environment.

Of course, multicore architectures are new and there is 
much to be learned.   In  particular  software issues are 
more important in multicore devices than in traditional 

single  core  architectures.   The  ability  to  parallelize 
software across a large number of cores will be the key 
to successfully exploiting the potential high performance 
of multicore devices.  As work on tools, algorithms, and 
programming techniques progress, the parameters which 
define  emerging  multicore  architectures  will  become 
more sharply defined.

But  the  situation  is  somewhat  unusual.   Multicore 
devices of many types are already in production, even 
without basic  software support.   A large swath of the 
semiconductor industry is now dependent on significant 
breakthroughs  in  application  level  software  which 
already appear to be overdue.

REFERENCES

[1]  “The Future of Microprocessors”, David Patterson, 
U.  California  at  Berkeley,  June  2001. 
http://www.cs.berkeley.edu/~pattrsn/talks/NAE.ppt

[2]  Kunle  Olukotoun  and  Lance  Hammond,  "The 
Future of  Microprocessors",  ACM Queue,  Volume 
3, Number 7, September 2005, pages 26-34.

[3]  Michael  J.  Beauchamp,  Scott  Hauck,  Keith  D. 
Underwood,  K.  Scott  Hemmert,  "Architectural 
Modifications  to  Improve  Floating-Point  Unit 
Efficiency in FPGAs",  International Conference on 
Field Programmable Logic and Applications (FPL) , 
2006. Aug. 2006 Pages 1 - 6.

[4]  Michael  J.  Beauchamp,  Scott  Hauck,  Keith  D. 
Underwood,  K.  Scott  Hemmert,   "Embedded 
floating-point units in FPGAs",  Proceedings of the 
2006  ACM/SIGDA  14th  International  Symposium 
on  Field  Programmable  Gate  Arrays  (FPGA), 
Monterey, California, February 22-24, 2006, pages: 
12 - 20.

[5]  Krste  Asanovic,  Ras  Bodik,  Jim  Demmel,  John 
Kubiatowicz,  Kurt  Keutzer,  Edward  Lee,  George 
Necula,  Dave Patterson,  Koushik Sen,  John Shalf, 
John  Wawrzynek,  and  Kathy  Yelick,  "The 
Landscape  of  Parallel  Computing  Research:   The 
View  from  Berkeley  2.0",  Manycore  Computing 
Workshop,  June  2007, 
http://science.officeisp.net/ManycoreComputingWor
kshop07/Presentations/David%20Patterson.pdf

[6]  Rey Archide, "The Microblaze v5.0 Soft-Processor 
Core:   Optimized  for  Performance",  Xilinx 
Embedded Magazine,  November 2006,  pages  18  - 
21.

[7]  "Intel  Consumer  Desktop  PC  Microprocessor 
History  Timeline, 
http://www.intel.com/pressroom/kits/core2duo/pdf/m
icroprocessor_timeline.pdf

[8]  Cmpware, Inc.  http://www.cmpware.com/, 2008.

http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.cs.berkeley.edu/~pattrsn/talks/NAE.ppt

