
Microprocessors: The New LUT

Steven A. Guccione
Cmpware, Inc.

Austin, TX (USA)
Steven.Guccione@cmpware.com

Abstract

Hardware design for high performance computing
appears to be reaching its limits on several fronts. In
the desktop microprocessor world, clock speeds seem to
have reached their peak somewhere below 10 GHz.
Power consumption has begun to approach, and in
some cases surpass, 100 W. These issues, along with
the problems of managing designs of approximately a
billion transistors have caused one of the most profound
changes in microprocessor architecture in decades.
Every maker of desktop microprocessors has
abandoned the traditional performance scaling
approaches which have driven the industry for decades
and have opted for so-called multicore designs. Today,
it is widely accepted that no future commercial high-
performance microprocessors will be built using a
single CPU core. It is difficult to overestimate the
significance of this change.

A similar trend can has been seen in the ASIC and
FPGA worlds. As both power and design complexity
issues converge on designers, multiple microprocessor
cores are increasingly found in integrated circuit
designs. This trend in desktop microprocessors, ASIC
and FPGA designs points toward a new reconfigurable
architecure based on multiple microprocessor cores
working togther in parallel.

Such a system has many advantages over more
traditional system design approaches. The design is
inherently easier to design, uses a familar programming
model, provides high levels of performance with modest
power consumption.

In this paper a single chip multiprocessor architecture
will be explored in more detail. A programming model
will be demonstrated using standard peocessor design
tools and implementing a flexible, multiprocessor
version of the Advanced Encryption Standard (AES).
This implementation will serve as a motivation to
explore the limits of exploitable parallelism in such a
system, as well as issues of programmability and power
consumption.

1. Introduction

Hardware design for high performance computing
appears to be reaching its limits on several fronts. In the
desktop microprocessor world, clock speeds seem to
have reached their peak somewhere below 10 GHz.
Power consumption has begun to approach, and in some
cases surpass, 100 W. These issues, along with the
problems of managing designs of approximately a
billion transistors have caused one of the most profound
changes in microprocessor architecture in decades.
Every maker of desktop microprocessors has abandoned
the traditional performance scaling approaches which
have driven the industry for decades and have opted for
so-called multicore designs [1][2][3]. Today, it is
widely accepted that no future commercial high-
performance microprocessors will be built using a single
CPU core. It is difficult to overestimate the significance
of this change.

A similar trend can has been seen in the FPGA world.
As both power and design complexity issues converge
on FPGA manufacturers and users, an increase in the
use of microprocessor cores has been noted. This first
occurred in FPGA hardware, as in the case of the
multiple PowerPC cores in the Xilinx Virtex-II Pro.
Shortly thereafter, processor cores have increasingly
appeared in the end-user applications with the popularity
of “soft” processor cores such as the Altera NIOS.

Vendors of ASIC processor cores such as Tensilica, Arc
and Arm are reporting a similar trend. Customers are
now averaging several processor cores per ASIC design,
with dozens or even hundreds being reported in high-
end designs. A number of small companies have even
recently been offering multiple processors in a single
device to solve a variety of high performance and / or
low power applications.

These of trends all point toward the emergence of a new
reconfigurable architecture based on multiple traditional
microprocessor cores working in parallel. As with many
leading edge hardware technologies, development of
supporting software for such architectures has lagged.
And perhaps more so than with previous architectures,
the form and quality of software and tools for these

multicore architectures will be a major factor in the rate
of their acceptance.

2. Hardware Design Challenges
The ever increasing number of transistors available on a
silicon die presents a continuing challenge to hardware
designers. The ability to successfully utilize these new
resources to provide better solutions stretches not only
the limits of existing architectures and the tools but of
techniques used to design modern circuits as well. The
most recent wave of problems confronting hardware
designers includes some ongoing challenges, including
managing larger designs.

But there are also some new challenges as transistor
geometries shrink further into the deep submicron.
These include increased power consumption due to
leakage currents, signal integrity problems and
reliability issues. Finally, the sheer size of modern
devices and the high clock speeds present some new
limits on designs. A signal may no longer be able to
traverse much of the die in a single clock cycle, even
with extensive buffering. Such issues are leading to
changes in architecture, tools and techniques for
hardware design.

2. 1 The Design Gap

The ever-increasing number of transistors available to
hardware designers led to a problem commonly referred
to as the "Design Gap". This is the implied situation
where doubling the available hardware resources should
also require a doubling of the amount of labor required
to design a large circuit.

With the density of integrated circuits growing at
approximately 60% per year and design productivity
growing at approximately 20%, there is an increasing
gap between the available circuit resources and the
human effort required to utilize those circuit resources.

Figure 1 illustrates this effect. The exact alignment of
the data in the graph is not as important as the fact that
managing design complexity becomes increasingly
difficult as time passes.

2. 2 Design Abstraction Levels

Fortunately, the management of design complexity has
managed to keep pace with the underlying technology
through several decades of robust growth. It has not,
however, come without substantial changes to the way
semiconductor devices are designed. Unlike the
underlying silicon technology changes, the changes in
design techniques have come less gradually, often by
abrupt shifts in design tools and techniques.

Much of the increase in design productivity has come
from taking a higher level view of the design.
Originally, silicon design was done more or less
manually, with design and layout being essentially the
same function. Gradually, design was done more
abstractly, at the transistor level, with physical design
decoupled and often performed by a completely
different team.

Era Design Unit Transistors
1960s: Physical / Transistor <1

1970s: Gate 10

1980s: RTL / Synthesis 1,000

1990s: IP Blocks 100,000

2000s: Microprocessors 10,000,000

Table 1: The increasing design abstraction level.

Levels of abstraction rose from transistor to gate to
Register Transfer Level (RTL) to larger Intellectual
Property or "IP" blocks. Along with this growth, the
functionality of the design tools also increased. To
further bootstrap this system, the requirements of the
design tools and design systems often stretched the
limits of performance and functionality of the hardware
being designed. Bigger and faster machines were
required to build bigger and faster machines.

The increase in circuit density has led to a shift in tools
and techniques approximately every decade to decade
and a half. This corresponds to roughly a 10x to 100x
increase in density, which appears to be the limits on
effective use of a given set of design tools and
techniques. The process for designing million transistor
circuits, for instance, appears to reach its limits at
approximately 100 million transistors. The trend has
been to raise the level of abstraction, while necessarily
retaining the interfaces to the previous levels of
abstractions. Table 1 gives a rough indication of the

Figure 1: The design gap.
1999 2000 2001 2002 2003 2004 2005 2006 2007

IC Density

Productivity

progress of design tools and abstractions over the last
half of a century.

This ongoing situation where increasing hardware size
and complexity pushed increasingly capable design tools
and techniques reached its latest phase at approximately
the 10 million transistor level At this point no
significant design techniques or tool breakthroughs have
occurred in several years since the adoption of IP block
design methodologies. Hardware design teams are
becoming large enough that the design cost for custom
integrated circuits is becoming prohibitive.

2. 3 Verification

While much has been written about the current design
gap, a large part of the problem is focused on the
verification phase of hardware design. Once the
hardware is designed, various techniques are used to test
the design to verify that it meets the specification
requirements. This typically involves running test
vectors on hardware simulators or emulators and
comparing them to known good results.

As the size and complexity of hardware has increased,
the problem of verifying correct behavior has grown
disproportionally. It is estimated that 70% of the overall
design effort is currently in verification. But this is
somewhat misleading. Even with this large effort,
nearly all designs have some defects, and as many as
half require a a second pass at design, verification and
manufacture to produce an acceptable product. While
70% is the figure often quoted, more resources could
clearly be devoted to verification.

2. 4 Power Consumption

Perhaps most importantly, a new emerging design
constraint on large circuits is power consumption and
heat dissipation. On designs such as desktop
microprocessors, the amount of heat generated is in
excess of 100W and is reaching the limits of what can
be conveniently dissipated. Power budgeting when the
design is partitioned is rapidly becoming the dominant
design constraint. This concern for power consumption
has served to further stretch the capabilities of existing
design tools and techniques.

2. 5 The Performance Gap

Finally, the ever increasing size of available hardware
and the relative plateauing of microprocessor
performance has led to a new and emerging gap in the
design space. The raw capabilities of existing hardware
now dwarf the raw capabilities for a single traditional
processor by many orders of magnitude.

This, combined with the increasing cost of custom
hardware, has led to some stark choices in system
design. If the design cannot meet its performance goals

with software, a large leap in design cost and complexity
must be made and a hardware solution implemented.
This results in a much higher cost and risk of a custom
hardware solution even if the performance requirements
only slightly exceed the capabilities of software.

A design requiring twice the performance of a software
solution will have to make the leap to the same hardware
design environment used by designs that may require
many orders of magnitude increase in performance. The
large and growing difference in performance between a
software and hardware implementation has led to a
class of mid-performance solutions that are not well
served by existing technology.

3. Multiprocessors
After several years of research [5][6][7][8][9], the
movement toward integrating multiple microprocessor
cores onto an single semiconductor device has found
commercial use relatively suddenly, and in several
distinct areas. These areas include desktop
microprocessors, Field Programmable Gate Arrays
(FPGAs) and Application Specific Integrated Circuits
(ASICs). It is believed that this represents a larger trend
in hardware design overall, indicating the next level of
abstraction for hardware design.

First, in the area of desktop microprocessors, after
literally decades of successful uniprocessor
development, every major vendor of commercial
microprocessors has shifted development away from
traditional single core processor design to
multiprocessors.

For decades, microprocessor architects have been able
to take advantage of increasing transistor budgets to
increase performance. Various enhancements to the
basic microprocessor architecture, including floating
point support, multiple ALUs, and on-chip caches have
played a large role in increasing performance.

This long standing trend, however, appears to have been
broken. The most recent generation of microprocessors
has used this latest increase in transistor budget by
replicating existing processor architectures on the die.

This represents a very significant break with the past.
Up until this point, processors have maintained software
compatibility with previous generations. Many
processor families offered binary compatibility across
decades of products. Many others would at most require
a simple re-compilation. Multicore microprocessors,
however, have broken this long and impressive trend.
At some level, existing software has to be re-written to
take advantage of these multicore architectures.

In the FPGA world, the basic cell of modern FPGAs has
continued to grow, and now consumes tens of thousands

of transistors. Perhaps not coincidentally, this is
approximately the same size of a modern embedded
processor. Additionally, nearly every FPGA vendor has
offered a traditional FPGA fabric with one or more
integrated microprocessor cores. This includes the
Xilinx Virtex-II Pro [4], the Altera Excalibur and the
QuickLogic QuickMIPS. In addition, there has been an
strong trend toward using embedded 'soft' processors
such as the Xilinx MicroBlaze and the Altera NIOS
[15]. It is interesting to note that such 'soft' processors
typically take on the order of 1000 LUTs to implement
and that on the order of 100 such processors could fit in
a modern FPGA device.

Finally, in the ASIC world, reports from microprocessor
core vendors is that the average design now uses six
microprocessor cores [13] and is increasing. The Cisco
Carrier Routing System (CRS-1) reports 188
microprocessors on a single die to do 40 GBPS packet
processing [19].

4. Configurable Multiprocessing
The idea of using a microprocessor as a basic processing
element and using many such elements to achieve
system design goals is an idea that is gaining popularity.
In fact, it is currently possible to configure dozens of
processors in an FPGA and to put literally thousands of
processors in a single die. This provides a level of raw
performance which is orders of magnitude of higher than
single core solutions and is competitive with custom
hardware. It also provides other capabilities that make it
a highly competitive high performance solution. These
include:

Flexibility: Multiprocessing on a single device provides
a highly programmable solution. The underlying
programmability is based on the traditional instruction
set model, and thus makes use of traditional compiler
technology. This is in comparison to the relatively
inflexible hardware design flow that has been the
underpinnings of nearly all reconfigurable logic
devices.

Power: A multiprocessor is more power efficient than a
uniprocessor system. This is one of the reasons
commercial desktop microprocessors have moved to
multicore approaches. The increasingly complex
hardware necessary to boost the performance of a
uniprocessor architecture is no longer competitive with
multicore approaches.

Simplified hardware design: Perhaps the best reason
for the rise of multiprocessing is its ability to manage
hardware design complexity. Using existing pre-
verified processor cores makes hardware design for such
systems relatively easy, if not trivial. This is opposed to
going through the risky, expensive and time-consuming

custom hardware design and verification process to
achieve performance and power goals.

While this approach solves many of the problems facing
hardware designers, it does so by moving much of the
system design and implementation effort into software.
And like so many hardware solutions before it, support
for the software challenges has been slower in coming.
Because of the pressures due to power, performance and
programmability, it appears certain that such
multiprocessor systems will be a part of the future of
system design. How quickly they are adopted and at
what cost will depend largely on the quality and
availability of software tools. What these tools will look
like is still an open question and one increasingly under
study.

One set of tools addressing the programming of
multiprocessor systems in the Configurable
Multiprocessor Development Kit (CMP-DK) from
Cmpware, Inc. This integrated software development
environment is based on the popular Eclipse
environment and provides fast simulation models for
microprocessors, integrated into a multiprocessor
simulation engine. The toolkit lets processors and their
interconnection network be quickly and simply defined.
Once these models are in place, code compiled using the
standard processor software development tools is loaded
onto the processors and executed.

The toolkit provides a wide variety of views of the
execution to assist in debug and analysis. These view
include familiar debugger views such as source code,
disassembly, variables, registers and memory. In
addition, cycle counts and an estimation of power
consumption as well as statistics and live data for the
communication links are provided. This interconnection
network information is extremely valuable in analyzing
the system and is typically absent in similar systems
based on uniprocessor debuggers and tools.

Figure 2: The Cmpware CMP-DK.

The Cmpware toolkit has some default models that are
appropriate for many uses. The default processor model
is the NIOS II microprocessor core from Altera. The
default communication link is a shared 32-bit memory
mapped register with a hardware semaphore. This
provides a fast and efficient point-to-point
communication mechanism for CMP architectures. Data
can be written to the register on one cycle and read by
another processor on the next. It is this sort of high
bandwidth communication that permits processors to
exploit parallelism at very fine levels of granularity.

The default network mode is a nearest-neighbor mesh
using these shared registers. The dimensions of the
processor array, as well as the models for the processor,
link and network can be set from an Eclipse preference
page and models are constructed and initialized with
little or no noticeable delay.

While the Cmpware toolkit can be used to produce any
sort of processor / network simulation models, this
shared register approach is recommended and has some
notable benefits. First, this approach permits the
processor / compiler to be treated as a “black box”
capable of implementing algorithms from a high level
language. It does not require any modification to the
processor core, which is likely to be difficult or
impossible, depending on the nature of the IP.

Additionally, hardware and architecture modifications
will require further modifications to the compiler and
other development tools. A memory mapped I/O port
requires no hardware modification to the processor core
and tools and permits software access via a simple
address pointer.

Finally, such communication links are much simpler to
analyze and debug than other implementations. Traffic
on shared buses, for instance, can be difficult to analyze
and problems, particularly race conditions, can be
difficult to track down in such environments. With
direct communication channels, one processor sends
data and another receives it. If some inter-processor
communication problem occurs, it is usually a simple
matter to find the source.

4. A Programming Model
While there are many proposed programming models for
multiprocessors, the availability of high performance
communication links between the processors provides a
substantial change in the processing characteristics
compared to older, system level multiprocessors.

Older system-level multiprocessors had relatively
powerful processors and relatively slow communication
links. This supported applications with large amounts of
processing and short, infrequent inter-processor
communications. In general, 'large grained' or task-level
parallelism was all that could be exploited.

A configurable multiprocessor has actually reversed this
situation. The processor itself can only service a single
communication port in a given cycle. But since each
processor is likely to have many such ports (the default
mesh has four), the configurable multiprocessor actually
has more communication bandwidth than processing
power.

The programming model currently favored is one similar
to hardware development. Functions are designed and
implemented in typical serial software fashion, but they
are interconnected at a higher level of subroutines that
implement the communication. In general, this
communication level reads input parameters and data
from communication channels and passes this on to the
the standard serial subroutines. The results of these
subroutines are then sent to other processors as partial or
intermediate results for further processing.

While this can be seen as an RTL-like approach, and
indeed for the degenerate case of one operation per
processor it does resemble RTL very closely, it is
possible to perform more general and irregular
computation across many cycles in a processor. This
provides an implementation platform with much of the
power of a custom hardware implementation with very
high degree of flexibility.

Figure 3: The AES multiprocessor data flow.

4. An AES Encryption Example
The Advanced Encryption Standard (AES) is an
algorithm for data encryption. This algorithm arose
from a proposal by the US National Institute of
Standards and Technology (NIST) in 1997 to replace
the aging Data Encryption Standard (DES) which was
beginning to show signs of vulnerability. AES was
selected from a large field of applicants and provides a
good balance of simplicity and encryption strength. It
also is designed to be implemented efficiently in either
hardware or software [16][17].

The algorithm itself takes 128, 192 or 256 bits of data
and using a 128, 192 or 254 bit encryption key,
produces an encrypted result of the same size as the
input. In this example, we will concentrate on the 128
bit input and 128 bit key variation of the algorithm,
although all are very similar in implementation.

In this case, the algorithm is broken up into eleven
stages called 'rounds'. The first and last round are
unique, but the intermediate nine rounds are identical.
Each of these rounds takes a 128 bit key and 128 bits of
data and produces a 128 bit result. This result is
forwarded to the next round of the algorithm.

Such an algorithm can be implemented in hardware with
each round pipelined [18]. Similarly, a multiprocessor
implementation can implement each round in a single
processor, passing temporary results on in a pipeline-
like fashion.

Figure 3 shows the multiprocessor implementation of
the AES algorithm. The first node in the figure is just
used to send test data in to the AES algorithm. This data
source is a general input and could be any data source in
the system. The arced arrows represent some
initialization parameters set to the processors at start-up.
These are more explicit in the actual code, but they
provide the number of rounds in the algorithm, the
number of nodes in the system and the current node
number. All nodes begin by reading these parameters,
then passing them on to the appropriate neighboring
nodes.

The code in Figure 4 is the actual code run on each of
the processors. The functionality is relatively simple.
Data is read in from the 'west' input port (which is just a
pointer and can be given any convenient name). This
data is used to call the round() function, which is just
the standard serial, uniprocessor version of the code
used to implement an AES round. Of course, this code
is relatively complex and involves various look-up
tables, etc., but it can be used unmodified from existing
uniprocessor code.

While it is acceptable to provide a point solution for a
fixed number of processors, the programmability of a

multiprocessor array permits a richer variety of solutions
with relatively little effort. Using the parameters passed
in to each node, it is possible to configure a solution for
a varying number of nodes.

For instance, if the parameter giving the number of
nodes is '2' and the number of rounds remains
necessarily fixed at eleven, it is possible to perform half
of the rounds on one node and half on the other. All this
will require is another loop around the round()
function call indicating how many times (and with which
parameters) it should be called. This is in fact the way
the algorithm is implemented. The addition of the extra
looping construct and some brief code to calculate the
start and end round for a given processor add
approximately a dozen lines of relatively simple code
and is not reproduced here.

5. AES Performance Results
Using the fully parameterized code, this AES algorithm
was run using the Cmpware toolkit on configuration
varying from one to eleven nodes. The default NIOS II
processor and shared register mesh network were used.
And because the NIOS II development is also Eclipse-
based, code development and compilation were done in
the same IDE as the multiprocessor simulation. 64k
bytes of data were used in each run to get a more
realistic estimate of performance. This was done to
remove the effect of start-up overheads, in particular key
scheduling,

The diagram in Figure 5 shows the speedup as
processors are added. The left axis indicates the relative
performance in thousands of cycles (KCycles) while the
right axis gives the speedup factor. Note that as the
number of cycles decreases as processors are added, the
speedup increases, as expected. What is striking about
this graph, however, is the large gain from adding the
second processor. The two-processor implementation
runs nearly twice as fast as the single processor

for(;;) {
 /* Get input */
 for (i=0; i<4; i++)
 in[i] = *west;
 round(round, in, out);

 /* Send output to next node */
 for (i=0; i<4; i++)
 *east = out[i];
 } /* end for(;;) */

Figure 4: The multiprocessor AES code.

implementation. Also of note is the plateau in
performance when processors seven through ten are
added, then the dramatic speedup when the eleventh is
added.

This is primarily because of the 'granularity' of the
computation. Because the number of rounds is about the
same as the number of processors, performance is
maximized when there is an even distribution of work.
In the cases where some nodes have an extra round to
perform, these node become the bottleneck, reducing the
overall throughput to that of the slowest processing
node.

Figure 6 give a representative execution profile for nine
nodes. Clearly this is not the ideal situation for an
algorithm with eleven fairly uniform pieces of work to
perform. And from the graph it can be seen that nodes
five and nine are running at full capacity, while all of the
other nodes are running at nearly half. These two nodes
have been charged with performing two rounds of
computation each, which the remaining node each
perform one. A final point is the low utilization of the
first node in nearly every case. In the AES algorithm
the first round is significantly simpler than the remaining
rounds. All that is done is the incoming data is XOR'ed
with the encryption key.

Of course, all of these details may be used for further
optimizing the system performance. But with eleven
processors and eleven rounds the utilization of all of the
processor performing the rounds approach 100%. This
leads to a factor of seven performance increase over the
single processor solution.

What is most notable here is that this speedup occurs on
a very programmable platform using very lightly
modified existing software. And there is still large
amounts of sub-round parallelism exploitable. This
would be done by breaking the round() method down
into component pieces in much the same way that the

top-level AES algorithm was partitioned. What is
interesting is that this becomes a purely software
endeavor, and that large gains in performance are
possible with no modification of hardware.

6. AES and Power Consumption
In this example, the processing node selected is a NIOS
II processor from Altera. The compiler used is the
standard Gnu C shipped with the NIOS development kit.
The communication network is a 2D grid, with each
processor communicating with its four neighbors,
although all of these links may not be used in this
particular example. The links used by the processors
are Shared Registers, which behave like one word
synchronous FIFOs. These permit data to be
communicated between nodes in a single cycle, while
providing the tight synchronization required for high
levels of processor utilization.

The diagram in Figure 7 illustrates the estimated power
consumption as processors are added to the AES
encryption algorithm. As with the diagram in Figure 5,
the left axis indicates the number of execution cycles in
thousands (KCycles) and the right axis gives the
estimate power consumption in milliwatts (mW). The
actual numbers used in this estimation are the Cmpware
defaults of 10 mW while running and 2 mW while idle.
This assumes that a processor waiting for
communication stalls in an idle mode and consumes a
much smaller amount of power than a processor running
and performing computation.

The performance data in Figure 7, as indicated by the
number of cycles, is identical to that in Figure 5, with
the number of total cycles required to execute the
algorithm decreasing as processors are added. The
profile of the power consumption is very similar to the
speedup in Figure 5, and this is to be expected. Because
the work is merely being shifted to other processors, the
total power consumed should track the processor
utilization.

Figure 6: AES utilization profile for nine nodes.

1 2 3 4 5 6 7 8 9

0

10

20

30

40

50

60

70

80

90

100

Processor

U
til

iz
at

io
n

Figure 5: Execution cycles and speedup as
processors are added.

1 2 3 4 5 6 7 8 9 10 11

0
100
200
300
400
500
600
700
800
900

1,000
1,100
1,200
1,300

0

1

2

3

4

5

6

7

8

Processors

K
C

yc
le

s
/ S

pe
ed

up

One small effect is seen in the 'plateau' region between
processors six and ten. Here processors are added, but
the overall performance does not increase. While the
utilization stays constant, the power increases slightly.
This is due to the power consumption overhead of the
idle processors. The added processors, even if they are
kept idle and are not contributing to the calculation, still
draw some power.

Figure 8 shows a graph of the the total energy
consumed, calculated by multiplying the execution time
(cycles) by the average power consumption in
milliwatts. This graph indicates that there is no
particularly large power penalty to adding processors.
The inefficiencies in the six to ten processor range,
where new processors are added which do not contribute
to an increase the speed of the calculation, are seen as
the slight rise in this region.

What is most notable is the relatively stable overall
energy consumed. Even in this relatively coarse grained
calculation, the overall energy consumed varies
approximately ten percent from the average. And
similar to the data in Figure 6, the addition of processors
six though ten did little to increase the overall system
performance, while incrementally decreasing the power
efficiency.

This trend reverses itself fairly drastically as the
workload becomes re-balanced when the eleventh
processor is added. The performance not only increases
relatively steeply, but the total energy consumed by the
calculation actually decreases. This is due to the large
increase in the overall efficiency of the processors,
reducing the cumulative overhead.

7. CMP and Power Consumption
While the AES implementation is very illustrative of the
strengths of the multiprocessor approach to managing
performance, some additional features of this approach

provide even greater flexibility and even lower power
consumption.

First, unlike fixed hardware solutions, this approach can
dynamically change the number of processors used,
varying the performance and power in a fairly linear
fashion. This sort of detailed power management is
difficult to achieve in systems with fixed hardware
resources.

A second feature of this approach is that it is possible to
add processors and keep the level of performance
constant. This allows a fairly linear reduction in clock
speed. In the case of the AES algorithm, eleven
processors could perform the algorithm at the same
speed as a single processor, but at approximately one-
seventh the clock speed.

In the previous graphs, the clock speed was assumed to
be a constant. But in most modern microprocessors, the
clock speed can be adjusted. In addition, at these lower
clock speeds, many modern processor cores can be run
at a lower voltage. And because power consumption is
proportional to the voltage squared, the power savings
can be dramatic, even as hardware is added in the form
of more processor cores.

Figure 9 shows the power consumption of the
ARM1020E processor from Samsung [20]. Note that as
the clock speed is increased, the voltage must also be
increased from 0.7V at 400 MHz to 1.1V at 1200 MHz.
This factor of three increase in clock speed and
performance results in a factor of seven increase in
power consumption, given that the voltage must rise
with the clock frequency.

A similar effect can also be seen if system performance
is held constant and processors are added. As the
additional processors raise the level of performance, the
clock speed can be lowered. In the general case, this is
simply trading the power consumption rate for
performance, as described in the AES demonstration.
However, if along with this lowering of the clock speed,

Figure 8: Total energy consumed.

1 2 3 4 5 6 7 8 9 10 11

0

3

5

8

10

13

15

18

20

23

Processors
m

W
 *

cy
cl

es
Figure 7: Performance and power consumption as

processors are added.

1 2 3 4 5 6 7 8 9 10 11

0
100
200
300
400
500
600
700
800
900

1,000
1,100
1,200
1,300

0
10

20
30

40
50

60

70
80

90

100

110
120

Processors

K
C

yc
le

s
/ m

W

the voltage is also lowered, additional power savings
can be realized.

In the case of the ARM1020E, a single processor
running at 1200 MHz has the same level of performance
as three processors running at 400 MHz. But the single
processor at 1200 MHz will consume 1800 mW, while
the three combined 400 MHz processors will only
consume 780 mW. This reduces the power consumption
by a factor of 2.3, while keeping performance constant.

Even if the utilization of these processors is less than
100%, reducing the power consumption by more than a
factor of two is noteworthy. Particularly because it
occurs by more than tripling the amount of hardware
used by the system and providing a flexible, fully
programmable system.

9. Managing Software
The idea of building hardware with dozens, hundreds or
even thousands of processors is not difficult to imagine.
In fact, the era of such embedded designs has already
begun. While the hardware techniques are clearly
within the grasp of today's tools and technologies,
application software development will remain the
challenge.

The success of application development will depend
heavily not only on sufficiently powerful tools, but also
on techniques to manage the increased complexity of the
software. Many large-grained CMP architectures for
desktop processing currently use a parallel task or thread
model. Here, the operating system allocates tasks or
threads to the various processors. This assumes the
system will have a significant amount of task-level
parallelism and that the communication between these
tasks is either very limited or nonexistent.

The CMP approach of port connected arrays of
processors puts further demands on the software, but
also has the potential to provide new levels of flexibility
and performance. This approach takes more of a
hardware view of the world, where data is processed by
one unit, then partial results passed on to other units for

further processing. This style of programming not only
permits extraction of very large amounts of parallelism
(as can be seen in hardware implementations), but it also
provides a level of flexibility unavailable in fixed
hardware solutions.

Such a programmable solution can be re-programmed
and re-defined at any time. This allows systems, even
fielded systems, to be upgraded to repair bugs, decrease
power consumption, increase performance and add
functionality. In fact, upgrades may optimize some or
all of these parameters simultaneously. This not only
extends product lifetimes, but should reduce time to
market. In addition to the simplification of the hardware
design effort, early systems can be released with a
foreknowledge that they will be enhanced via upgrades.

Finally, the implementation of algorithms such as AES
has led to the exploration of other issues in the
management of software for such large scale parallel
systems. One particular problem is the allocation of
software routines to the processing nodes.

At the top level, techniques from hardware are again
borrowed. A form of 'floor planning' permits blocks of
processors to be allocated to particular tasks. For
instance, in the case of AES, a block of eleven
processors could be allocated for encryption of a
channel, and eleven more for the decryption. These 22
processors may or may not all be used to perform the
task at hand, but they can be physically reserved.

Similarly, the mechanics of loading particular
executable code onto specific nodes can become a
chore. With dozens or more nodes, having a separate
object for each quickly becomes difficult to manage. As
in the AES example, we have favored a technique of
'parameterization' where identical code is loaded into all
nodes, and run-time parameters are used to define the
detailed functionality.

This is not only similar to function call parameters in
software and parameterized macros in hardware, but
also has interesting analogs in biology. In an organism,
each cell contains all of the same digital code (DNA), no
matter what its function. The process of 'differentiation'
permits cells to take on more specialized roles, usually
based on signals from neighboring cells.
Parameterization uses a very similar technique of
providing data to neighboring processors to not only
manage the software complexity, but to provide a
variety of functions for each processor.

10. Conclusions
Today, it is possible to build and program devices
containing thousands of processors. Even
reconfigurable logic devices such as FPGAs can easily
support hundreds of soft processor cores in a single

Figure 9: Power and clock speed for the
ARM1020E.

400 MHz (0.7V) 600 MHX (0.7V) 800 MHZ
(0.75V)

1000 MHz (0.9V) 1200 MHz (1.1V)

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

m
W

device. This provides the potential for thousands of
MIPS of computing power, programmed in traditional
high level languages. To make this approach even more
attractive, it operates at a power efficiency that is
significantly higher than the approach used by existing
uniprocessors.

While the hardware is relatively straight forward, the
software for such systems will continue to be a
challenge. Tools which provide a high level of visibility
into the internal workings of such architectures will be
necessary. And these tools must be well designed to
present the large amount of information generated at run
time by such parallel systems.

Lastly, the programming techniques used to exploit
these high performance systems will be crucial.
Techniques that leverage existing work and have a
theoretical basis similar to existing popular languages
and styles help make the transition to configurable
multiprocessing easier. While the hardware trends are
clear in the microprocessor, ASIC and even FPGA
areas, how software supporting such systems emerges
will define the cost and rate of acceptance of these
systems.

11. References
[1] “Intel Demonstrates Breakthrough Processor

Design”, http://www.intel.com/pressroom/
archive/releases/ 20010828comp.htm, August 28,
2001.

[2] “AMD Announces Technology Milestone With Its
Multiple-Core Strategy”, http://www.amd.com/us-
en/Corporate/VirtualPressRoom/
0,,51_104_543~86455,00.html, June 14, 2004.

[3] ”Sun Drives Multithreaded Processor Innovation
with New UltraSPARC IV+”,
http://www.sun.com/smi/Press/sunflash/2004-
10/sunflash.20041005.2.html, October 5, 2004.

[4] “Xilinx enhances FPGAs with embedded
PowerPCs”, http://www.eet.com/semi/news/
OEG20020304S0017, March 4, 2002.

[5] Lance Hammond, Basem A. Nayfeh and Kunle
Olkotun, A Single-Chip Multiprocessor, Computer,
Volume 30, Number 9, September 1997, Pages 79-
85.

[6] Lance Hammond, Ben Hubbert , Michael Siu,
Manohar Prabhu, Mike Chen , and Kunle Olukotun.
The Stanford Hydra CMP, IEEE MICRO Magazine,
March-April 2000.

[7] “The Future of Microprocessors”, David Patterson,
U. California at Berkeley, June 2001.
http://www.cs.berkeley.edu/~pattrsn/talks/NAE.ppt

[8] Chip Multiprocessing Resources:
http://www.princeton.edu/~jdonald/research/cmp/

[9] Stanford Hydra Project: http://www-
hydra.stanford.edu/

[10] John Goodacre, Understanding the Options for
Embedded Multiprocessing, ARM IQ Journal, Vol.2,
No.2.

[11] “Tensilica clears path to multiprocessor SoCs”,
http://www.eetimes.com/story/OEG20020826S0024,
August 26, 2002.

[12] “Tensilica Introduces Industry's First Integrated
Development Environment for Multiple Processor
SOC Hardware and Software Design”,
http://www.tensilica.com/html/pr_2003_06_16a.html
, June 16, 2003.

[13] “ARC International’s Customers Lead Way in
Multiprocessing Design”, http://www.us.design-
reuse.com/news/news5747.html, June 18, 2003.

[14] “Eclipse Platform Technical Overview”,
http://www.eclipse.org/whitepapers/eclipse-
overview.pdf, February, 2003.

[15] “Literature: NIOS II Processor”,
http://www.altera.com/literature/lit-nio2.jsp, 2004.

[16] J. Daemen, V. Rijmen, ``The Block Cipher
Rijndael,'' Smart Card Research and Applications,
LNCS 1820, J.-J. Quisquater and B. Schneier, Eds.,
Springer-Verlag, 2000, pp. 288-296.

[17] J. Daemen and V. Rijmen, ``Rijndael, the
advanced encryption standard,'' Dr. Dobb's Journal ,
Vol. 26, No. 3, March 2001, pp. 137-139.

[18] Scott McMillan and Cameron Patterson, "JBits
Implementation of the Advanced Encryption
Standards (Rijndael)", Field-Programmable Logic
and Applications, pages 162-171. Springer-Verlag,
Berlin, August 2001. Proceedings of the 11th
International Workshop on Field-Programmable
Logic and Applications, FPL 2001. Lecture Notes in
Computer Science 2147.

[19] "Cisco and IBM collaborate to design and build
world's most sophisticated, high-performance
40Gbps custom chip", http://www-03.ibm.com/
chips/news/2004/0609_cisco.html, June 9, 2004.

[20] "Samsung Twists ARM Past 1 GHz", Information
Quarterly, Volume 1, Number 1, 2002. (Reprinted
from "The Microprocessor Report").

[21] Ian Page, "Compiling Software to Gates",
Embedded.com, http://embedded.com/
showArticle.jhtml?articleID=55801142, December
2004.

