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Abstract

Hardware  design  for  high  performance  computing
appears to be reaching its limits on several fronts.  In
the desktop microprocessor world, clock speeds seem to
have  reached  their  peak  somewhere  below  10  GHz.
Power  consumption  has  begun  to  approach,  and  in
some cases surpass, 100 W.  These issues, along with
the problems of managing designs of approximately a
billion transistors have caused one of the most profound
changes  in  microprocessor  architecture  in  decades.
Every  maker  of  desktop  microprocessors  has
abandoned the  traditional  performance  scaling
approaches which have driven the industry for decades
and have opted for so-called multicore designs.  Today,
it is widely accepted that  no future commercial  high-
performance  microprocessors  will  be  built  using  a
single  CPU  core.   It  is  difficult  to  overestimate  the
significance of this change.

A  similar  trend  can  has  been  seen  in  the  ASIC and
FPGA worlds.  As both power and design complexity
issues converge on designers, multiple microprocessor
cores  are  increasingly  found  in  integrated  circuit
designs.  This trend in desktop microprocessors, ASIC
and FPGA designs points toward a new reconfigurable
architecure  based  on  multiple  microprocessor  cores
working togther in parallel.

Such  a  system  has  many  advantages  over  more
traditional  system design  approaches.   The  design  is
inherently easier to design, uses a familar programming
model, provides high levels of performance with modest
power consumption.

In this paper a single chip multiprocessor architecture
will be explored in more detail.  A programming model
will be demonstrated using standard peocessor design
tools  and  implementing  a  flexible,  multiprocessor
version  of  the  Advanced  Encryption  Standard  (AES).
This  implementation  will  serve  as  a  motivation  to
explore the limits of exploitable parallelism in such a
system, as well as issues of programmability and power
consumption.

1.  Introduction

Hardware  design  for  high  performance  computing
appears to be reaching its limits on several fronts.  In the
desktop  microprocessor  world,  clock  speeds  seem to
have  reached  their  peak  somewhere  below  10  GHz.
Power consumption has begun to approach, and in some
cases  surpass,  100  W.   These  issues,  along  with  the
problems  of  managing  designs  of  approximately  a
billion transistors have caused one of the most profound
changes  in  microprocessor  architecture  in  decades.
Every maker of desktop microprocessors has abandoned
the  traditional  performance  scaling  approaches  which
have driven the industry for decades and have opted for
so-called  multicore  designs  [1][2][3].   Today,  it  is
widely  accepted  that  no  future  commercial  high-
performance microprocessors will be built using a single
CPU core.  It is difficult to overestimate the significance
of this change.

A similar trend can has been seen in the FPGA world.
As both power and design complexity issues converge
on FPGA manufacturers and users,  an increase in the
use of microprocessor cores has been noted.  This first
occurred  in  FPGA  hardware,  as  in  the  case  of  the
multiple  PowerPC  cores  in  the  Xilinx  Virtex-II  Pro.
Shortly thereafter,    processor  cores have increasingly
appeared in the end-user applications with the popularity
of “soft” processor cores such as the Altera NIOS.

Vendors of ASIC processor cores such as Tensilica, Arc
and Arm are reporting a similar trend.  Customers are
now averaging several processor cores per ASIC design,
with dozens or  even hundreds being reported in high-
end designs.  A number of small companies have even
recently  been  offering multiple  processors  in  a  single
device to solve a variety of high performance and / or
low power applications.

These of trends all point toward the emergence of a new
reconfigurable architecture based on multiple traditional
microprocessor cores working in parallel.  As with many
leading  edge  hardware  technologies,  development  of
supporting software  for  such architectures  has  lagged.
And perhaps more so than with previous architectures,
the  form and  quality  of  software  and  tools  for  these



multicore architectures will be a major factor in the rate
of their acceptance.

2.  Hardware Design Challenges
The ever increasing number of transistors available on a
silicon die presents a continuing challenge to hardware
designers.  The ability to successfully utilize these new
resources to provide better solutions stretches not only
the limits of existing architectures and the tools but of
techniques used to design modern circuits as well.  The
most  recent  wave  of  problems  confronting  hardware
designers includes some ongoing challenges, including
managing larger designs.

But  there are  also  some new challenges  as  transistor
geometries  shrink  further  into  the  deep  submicron.
These  include  increased  power  consumption  due  to
leakage  currents,  signal  integrity  problems  and
reliability  issues.   Finally,  the  sheer  size  of  modern
devices  and  the  high clock  speeds  present  some new
limits on designs.  A signal may no longer be able to
traverse much of the die in a single clock cycle, even
with extensive  buffering.   Such  issues  are  leading  to
changes  in  architecture,  tools  and  techniques  for
hardware design.

2. 1 The Design Gap

The ever-increasing number  of  transistors available to
hardware designers led to a problem commonly referred
to as the "Design Gap".   This is the implied situation
where doubling the available hardware resources should
also require a doubling of the amount of labor required
to design a large circuit.

With  the  density  of  integrated  circuits  growing  at
approximately  60%  per  year  and  design  productivity
growing at  approximately 20%,  there is  an increasing
gap  between  the  available  circuit  resources  and  the
human effort required to utilize those circuit resources.

Figure 1 illustrates this effect.  The exact alignment of
the data in the graph is not as important as the fact that
managing  design  complexity  becomes  increasingly
difficult as time passes.

2. 2  Design Abstraction Levels

Fortunately, the management of design complexity has
managed to keep pace with the underlying technology
through several decades of robust  growth.  It  has not,
however, come without substantial changes to the way
semiconductor  devices  are  designed.   Unlike  the
underlying silicon  technology changes,  the changes in
design techniques  have  come less  gradually,  often  by
abrupt shifts in design tools and techniques.

Much of the increase in design productivity has come
from  taking  a  higher  level  view  of  the  design.
Originally,  silicon  design  was  done  more  or  less
manually, with design and layout being essentially the
same  function.   Gradually,  design  was  done  more
abstractly,  at  the transistor  level,  with physical  design
decoupled  and  often  performed  by  a  completely
different team.

Era Design Unit Transistors
1960s: Physical / Transistor <1

1970s: Gate 10

1980s: RTL / Synthesis 1,000

1990s: IP Blocks 100,000

2000s: Microprocessors 10,000,000

Table 1:  The increasing design abstraction level.

Levels  of  abstraction  rose  from  transistor  to  gate  to
Register  Transfer  Level  (RTL)  to  larger  Intellectual
Property or  "IP"  blocks.   Along with this growth, the
functionality  of  the  design  tools  also  increased.   To
further  bootstrap  this  system, the  requirements  of  the
design  tools  and  design  systems  often  stretched  the
limits of performance and functionality of the hardware
being  designed.   Bigger  and  faster  machines  were
required to build bigger and faster machines.

The increase in circuit density has led to a shift in tools
and  techniques  approximately every decade  to  decade
and a half.  This corresponds to roughly a 10x to 100x
increase in density,  which appears to be the limits on
effective  use  of  a  given  set  of  design  tools  and
techniques.  The process for designing million transistor
circuits,  for  instance,  appears  to  reach  its  limits  at
approximately 100  million transistors.   The  trend  has
been to raise the level of abstraction, while necessarily
retaining  the  interfaces  to  the  previous  levels  of
abstractions.   Table  1  gives a  rough indication of  the

Figure 1:  The design gap.
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progress of design tools and abstractions over the last
half of a century.

This ongoing situation where increasing hardware size
and complexity pushed increasingly capable design tools
and techniques reached its latest phase at approximately
the  10  million  transistor  level   At  this  point  no
significant design techniques or tool breakthroughs have
occurred in several years since the adoption of IP block
design  methodologies.   Hardware  design  teams  are
becoming large enough that the design cost for custom
integrated circuits is becoming prohibitive.

2. 3  Verification

While much has been written about the current design
gap,  a  large  part  of  the  problem  is  focused  on  the
verification  phase  of  hardware  design.   Once  the
hardware is designed, various techniques are used to test
the  design  to  verify  that  it  meets  the  specification
requirements.   This  typically  involves  running  test
vectors  on  hardware  simulators  or  emulators  and
comparing them to known good results.

As the size and complexity of hardware has increased,
the  problem  of  verifying  correct  behavior  has  grown
disproportionally.  It is estimated that 70% of the overall
design  effort  is  currently  in  verification.  But  this  is
somewhat  misleading.   Even  with  this  large  effort,
nearly all designs have some defects,  and as many as
half require a a second pass at design, verification and
manufacture to produce an acceptable product.  While
70% is the figure often quoted,  more resources  could
clearly be devoted to verification.

2. 4  Power Consumption

Perhaps  most  importantly,  a  new  emerging  design
constraint  on large circuits  is  power consumption and
heat  dissipation.   On  designs  such  as  desktop
microprocessors,  the  amount  of  heat  generated  is  in
excess of 100W and is reaching the limits of what can
be conveniently dissipated.  Power budgeting when the
design is partitioned is rapidly becoming the dominant
design constraint.  This concern for power consumption
has served to further stretch the capabilities of existing
design tools and techniques.

2. 5  The Performance Gap

Finally, the ever increasing size of available hardware
and  the  relative  plateauing  of  microprocessor
performance has led to a new and emerging gap in the
design space.  The raw capabilities of existing hardware
now dwarf the raw capabilities for a single traditional
processor by  many orders of magnitude.

This,  combined  with  the  increasing  cost  of  custom
hardware,  has  led  to  some  stark  choices  in  system
design.  If the design cannot meet its performance goals

with software, a large leap in design cost and complexity
must  be  made  and  a  hardware  solution  implemented.
This results in a much higher cost and risk of a custom
hardware solution even if the performance requirements
only slightly exceed the capabilities of software.

A design requiring twice the performance of a software
solution will have to make the leap to the same hardware
design environment  used  by designs that  may require
many orders of magnitude increase in performance.  The
large and growing difference in performance between a
software  and  hardware  implementation  has  led  to  a
class  of  mid-performance  solutions  that  are  not  well
served by existing technology.

3. Multiprocessors
After  several  years  of  research  [5][6][7][8][9],  the
movement  toward  integrating  multiple  microprocessor
cores onto an single semiconductor device has  found
commercial  use  relatively  suddenly,  and  in  several
distinct  areas.   These  areas  include  desktop
microprocessors,  Field  Programmable  Gate  Arrays
(FPGAs)  and  Application  Specific  Integrated  Circuits
(ASICs).  It is believed that this represents a larger trend
in hardware design overall, indicating the next level of
abstraction for hardware design.

First,  in  the  area  of  desktop  microprocessors,  after
literally  decades  of  successful  uniprocessor
development,  every  major  vendor  of  commercial
microprocessors  has  shifted  development  away  from
traditional  single  core  processor  design  to
multiprocessors.

For decades, microprocessor architects have been able
to  take  advantage  of  increasing  transistor  budgets  to
increase  performance.   Various  enhancements  to  the
basic  microprocessor  architecture,  including  floating
point support, multiple ALUs, and on-chip caches have
played a large role in increasing performance.

This long standing trend, however, appears to have been
broken.  The most recent generation of microprocessors
has  used  this  latest  increase  in  transistor  budget  by
replicating existing processor architectures on the die.

This represents a very  significant break with the past.
Up until this point, processors have maintained software
compatibility  with  previous  generations.   Many
processor  families  offered  binary  compatibility  across
decades of products.  Many others would at most require
a  simple  re-compilation.   Multicore  microprocessors,
however,  have broken this long and impressive  trend.
At some level, existing software has to be re-written to
take advantage of these multicore architectures.

In the FPGA world, the basic cell of modern FPGAs has
continued to grow, and now consumes tens of thousands



of  transistors.   Perhaps  not  coincidentally,  this  is
approximately  the  same  size  of  a  modern  embedded
processor.  Additionally, nearly every FPGA vendor has
offered  a  traditional  FPGA  fabric  with  one  or  more
integrated  microprocessor  cores.   This  includes  the
Xilinx Virtex-II  Pro  [4],  the Altera Excalibur  and the
QuickLogic QuickMIPS.  In addition, there has been an
strong  trend  toward  using  embedded  'soft'  processors
such  as  the  Xilinx  MicroBlaze  and  the  Altera  NIOS
[15].  It is interesting to note that such 'soft' processors
typically take on the order of 1000 LUTs to implement
and that on the order of 100 such processors could fit in
a modern FPGA device.

Finally, in the ASIC world, reports from microprocessor
core  vendors  is  that  the average  design now uses  six
microprocessor cores [13] and is increasing.  The Cisco
Carrier  Routing  System  (CRS-1)  reports  188
microprocessors on a single die to do 40 GBPS packet
processing [19].

4. Configurable Multiprocessing
The idea of using a microprocessor as a basic processing
element  and  using  many  such  elements  to  achieve
system design goals is an idea that is gaining popularity.
In fact,  it  is  currently possible to configure dozens of
processors in an FPGA and to put literally thousands of
processors in a single die.  This provides a level of raw
performance which is orders of magnitude of higher than
single  core  solutions  and  is  competitive  with  custom
hardware.  It also provides other capabilities that make it
a highly competitive high performance solution.  These
include:

Flexibility:  Multiprocessing on a single device provides
a  highly  programmable  solution.   The  underlying
programmability is  based on the traditional instruction
set  model,  and thus makes use of  traditional  compiler
technology.   This  is  in  comparison  to  the  relatively
inflexible  hardware  design  flow  that  has  been  the
underpinnings  of  nearly  all   reconfigurable  logic
devices.

Power:  A multiprocessor is more power efficient than a
uniprocessor  system.  This  is  one  of  the  reasons
commercial  desktop  microprocessors  have  moved  to
multicore  approaches.   The  increasingly  complex
hardware  necessary  to  boost  the  performance  of  a
uniprocessor architecture is no longer competitive with
multicore approaches.

Simplified hardware design:  Perhaps the best reason
for the rise of multiprocessing is its ability to manage
hardware  design  complexity.   Using  existing  pre-
verified processor cores makes hardware design for such
systems relatively easy, if not trivial.  This is opposed to
going through the risky, expensive and time-consuming

custom  hardware  design  and  verification  process  to
achieve performance and power goals.

While this approach solves many of the problems facing
hardware designers, it does so by moving much of the
system design and  implementation effort into software.
And like so many hardware solutions before it, support
for the software challenges has been slower in coming.
Because of the pressures due to power, performance and
programmability,  it  appears  certain  that  such
multiprocessor  systems will be a  part  of the future of
system design.   How quickly they are adopted  and at
what  cost  will  depend  largely  on  the  quality  and
availability of software tools.  What these tools will look
like is still an open question and one increasingly under
study.

One  set  of  tools  addressing  the  programming  of
multiprocessor  systems  in  the  Configurable
Multiprocessor  Development  Kit  (CMP-DK)  from
Cmpware,  Inc.   This  integrated  software  development
environment   is  based  on  the  popular  Eclipse
environment  and  provides  fast  simulation  models  for
microprocessors,  integrated  into  a  multiprocessor
simulation engine.  The toolkit lets processors and their
interconnection network be quickly and simply defined.
Once these models are in place, code compiled using the
standard processor software development tools is loaded
onto the processors and executed.

The  toolkit  provides  a  wide  variety  of  views  of  the
execution to  assist in debug and analysis.  These view
include  familiar  debugger views such as  source code,
disassembly,  variables,  registers  and  memory.   In
addition,  cycle  counts  and  an  estimation  of  power
consumption as well as statistics and live data for the
communication links are provided.  This interconnection
network information is extremely valuable in analyzing
the  system and  is  typically  absent  in  similar  systems
based on uniprocessor debuggers and tools.

Figure 2: The Cmpware CMP-DK.



The Cmpware toolkit has some default models that are
appropriate for many uses.  The default processor model
is the NIOS II  microprocessor core from Altera.  The
default communication link is a shared 32-bit memory
mapped  register  with  a  hardware  semaphore.   This
provides  a  fast  and  efficient  point-to-point
communication mechanism for CMP architectures.  Data
can be written to the register on one cycle and read by
another  processor  on the next.   It  is  this  sort  of high
bandwidth  communication  that  permits  processors  to
exploit parallelism at very fine levels of granularity.

The default network mode is  a nearest-neighbor mesh
using  these  shared  registers.   The  dimensions  of  the
processor array, as well as the models for the processor,
link and network can be set from an Eclipse preference
page  and  models  are  constructed  and  initialized  with
little or no noticeable delay.

While the Cmpware toolkit can be used to produce any
sort  of  processor  /  network  simulation  models,  this
shared register approach is recommended and has some
notable  benefits.   First,  this  approach  permits  the
processor  /  compiler  to  be  treated  as  a  “black  box”
capable of implementing algorithms from a high level
language.  It  does not  require any modification to the
processor  core,  which  is  likely  to  be  difficult  or
impossible, depending on the nature of the IP.  

Additionally,  hardware  and  architecture  modifications
will require  further  modifications to  the compiler  and
other development tools.  A memory mapped I/O port
requires no hardware modification to the processor core
and  tools  and  permits  software  access  via  a  simple
address pointer.

Finally, such communication links are much simpler to
analyze and debug than other implementations.  Traffic
on shared buses, for instance, can be difficult to analyze
and  problems,  particularly  race  conditions,  can  be
difficult  to  track  down  in  such  environments.   With
direct  communication  channels,  one  processor  sends
data  and  another  receives  it.   If  some inter-processor
communication problem occurs,  it  is  usually a  simple
matter to find the source.

4.  A Programming Model
While there are many proposed programming models for
multiprocessors,  the  availability  of  high  performance
communication links between the processors provides a
substantial  change  in  the  processing  characteristics
compared to older, system level multiprocessors.

Older  system-level  multiprocessors  had  relatively
powerful processors and relatively slow communication
links.  This supported applications with large amounts of
processing  and  short,  infrequent  inter-processor
communications.  In general, 'large grained' or task-level
parallelism was all that could be exploited.

A configurable multiprocessor has actually reversed this
situation.  The processor itself can only service a single
communication port  in a given cycle.   But since each
processor is likely to have many such ports (the default
mesh has four), the configurable multiprocessor actually
has  more  communication  bandwidth  than  processing
power.

The programming model currently favored is one similar
to hardware development.  Functions are designed and
implemented in typical serial software fashion, but they
are interconnected at a higher level of subroutines that
implement  the  communication.   In  general,  this
communication  level  reads  input  parameters  and  data
from communication channels and passes this on to the
the  standard  serial  subroutines.   The  results  of  these
subroutines are then sent to other processors as partial or
intermediate results for further processing.

While this can be seen as an RTL-like approach,  and
indeed  for  the  degenerate  case  of  one  operation  per
processor  it  does  resemble  RTL  very  closely,  it  is
possible  to  perform  more  general  and  irregular
computation across many cycles in a  processor.   This
provides an implementation platform with much of the
power of a custom hardware implementation with very
high degree of flexibility.

Figure 3:  The AES multiprocessor data flow.



4.  An AES Encryption Example
The  Advanced  Encryption  Standard  (AES)  is  an
algorithm for  data  encryption.   This  algorithm arose
from  a  proposal  by  the  US  National  Institute  of
Standards  and  Technology (NIST)  in  1997  to  replace
the aging Data Encryption Standard (DES) which was
beginning  to  show signs  of  vulnerability.  AES  was
selected from a large field of applicants and provides a
good balance of simplicity and encryption strength.  It
also is designed to be implemented efficiently in either
hardware or software [16][17].

The algorithm itself takes 128, 192 or 256 bits of data
and  using  a  128,  192  or  254  bit  encryption  key,
produces  an  encrypted  result  of  the  same  size  as  the
input.    In this example, we will concentrate on the 128
bit  input  and  128  bit  key  variation  of  the  algorithm,
although all are very similar in implementation.

In  this  case,  the  algorithm is  broken  up  into  eleven
stages  called  'rounds'.   The  first  and  last  round  are
unique, but  the  intermediate nine rounds are identical.
Each of these rounds takes a 128 bit key and 128 bits of
data  and  produces  a  128  bit  result.   This  result  is
forwarded to the next round of the algorithm.

Such an algorithm can be implemented in hardware with
each round pipelined [18].  Similarly, a multiprocessor
implementation can implement each round in a  single
processor,  passing temporary results  on in  a  pipeline-
like fashion.

Figure  3  shows the  multiprocessor  implementation  of
the AES algorithm.  The first node in the figure is just
used to send test data in to the AES algorithm.  This data
source is a general input and could be any data source in
the  system.   The  arced  arrows  represent  some
initialization parameters set to the processors at start-up.
These  are  more  explicit  in  the  actual  code,  but  they
provide  the  number  of  rounds  in  the  algorithm,  the
number  of  nodes  in  the  system and  the  current  node
number.  All nodes begin by reading these parameters,
then  passing  them on  to  the  appropriate  neighboring
nodes.

The code in Figure 4 is the actual code run on each of
the processors.   The functionality is  relatively simple.
Data is read in from the 'west' input port (which is just a
pointer and can be given any convenient name).  This
data is used to call the round() function, which is just
the  standard  serial,  uniprocessor  version  of  the  code
used to implement an AES round.  Of course, this code
is  relatively  complex  and  involves  various  look-up
tables, etc., but it can be used unmodified from existing
uniprocessor code.

While it is acceptable to provide a point solution for a
fixed  number of  processors,  the  programmability of  a

multiprocessor array permits a richer variety of solutions
with relatively little effort.  Using the parameters passed
in to each node, it is possible to configure a solution for
a varying number of nodes.

For  instance,  if  the  parameter  giving  the  number  of
nodes  is  '2'  and  the  number  of  rounds  remains
necessarily fixed at eleven, it is possible to perform half
of the rounds on one node and half on the other.  All this
will  require  is  another  loop  around  the  round()
function call indicating how many times (and with which
parameters) it should be called.  This is in fact the way
the algorithm is implemented.  The addition of the extra
looping construct and some brief code to calculate the
start  and  end  round  for  a  given  processor  add
approximately a dozen lines of  relatively simple code
and is not reproduced here.

5.  AES Performance Results
Using the fully parameterized code, this AES algorithm
was  run  using  the  Cmpware  toolkit  on  configuration
varying from one to eleven nodes.  The default NIOS II
processor and shared register mesh network were used.
And because the NIOS II  development is also Eclipse-
based, code development and compilation were done in
the  same IDE as  the  multiprocessor  simulation.   64k
bytes  of  data  were  used  in  each  run  to  get  a  more
realistic  estimate  of  performance.   This  was  done  to
remove the effect of start-up overheads, in particular key
scheduling, 

The  diagram  in  Figure  5  shows  the  speedup  as
processors are added.  The left axis indicates the relative
performance in thousands of cycles (KCycles) while the
right axis  gives the speedup factor.   Note that  as  the
number of cycles decreases as processors are added, the
speedup increases, as expected.  What is striking about
this graph, however, is the large gain from adding the
second  processor.   The  two-processor  implementation
runs  nearly  twice  as  fast  as  the  single  processor

for(;;) {
   /* Get input */
   for (i=0; i<4; i++)
      in[i] = *west;
   round(round, in, out);

   /* Send output to next node */
   for (i=0; i<4; i++)
      *east = out[i];
   } /* end for(;;) */

Figure 4:  The multiprocessor AES code.



implementation.   Also  of  note  is  the  plateau  in
performance  when  processors  seven  through  ten  are
added, then the dramatic speedup when the eleventh is
added.

This  is  primarily  because  of  the  'granularity'  of  the
computation.  Because the number of rounds is about the
same  as  the  number  of  processors,  performance  is
maximized when there is an even distribution of work.
In the cases where some nodes have an extra round to
perform, these node become the bottleneck, reducing the
overall  throughput  to  that  of  the  slowest  processing
node.

Figure 6 give a representative execution profile for nine
nodes.    Clearly this  is  not  the ideal  situation for  an
algorithm with eleven fairly uniform pieces of work to
perform.  And from the graph it can be seen that nodes
five and nine are running at full capacity, while all of the
other nodes are running at nearly half.  These two nodes
have  been  charged  with  performing  two  rounds  of
computation  each,  which  the  remaining  node  each
perform one.  A final point is the low utilization of the
first node in nearly every case.  In the AES algorithm
the first round is significantly simpler than the remaining
rounds.  All that is done is the incoming data is XOR'ed
with the encryption key.

Of course, all of these details may be used for further
optimizing the  system performance.   But  with eleven
processors and eleven rounds the utilization of all of the
processor performing the rounds approach 100%.  This
leads to a factor of seven performance increase over the
single processor solution.

What is most notable here is that this speedup occurs on
a  very  programmable  platform  using  very  lightly
modified  existing  software.   And  there  is  still  large
amounts  of  sub-round  parallelism  exploitable.   This
would be done by breaking the round() method down
into component pieces in much the same way that the

top-level  AES  algorithm  was  partitioned.   What  is
interesting  is  that  this  becomes  a  purely  software
endeavor,  and  that  large  gains  in  performance  are
possible with no modification of hardware.

6.  AES and Power Consumption
In this example, the processing node selected is a NIOS
II  processor  from Altera.   The  compiler  used  is  the
standard Gnu C shipped with the NIOS development kit.
The  communication  network  is  a  2D grid,  with  each
processor  communicating  with  its  four  neighbors,
although  all  of  these  links  may  not  be  used  in  this
particular example.   The links used by the processors
are  Shared  Registers,  which  behave  like  one  word
synchronous  FIFOs.   These  permit  data  to  be
communicated between nodes in a  single cycle,  while
providing  the  tight  synchronization  required  for  high
levels of processor utilization.

The diagram in Figure 7 illustrates the estimated power
consumption  as  processors  are  added  to  the  AES
encryption algorithm.  As with the diagram in Figure 5,
the left axis indicates the number of execution cycles in
thousands  (KCycles)  and  the  right  axis  gives  the
estimate power consumption in milliwatts (mW).  The
actual numbers used in this estimation are the Cmpware
defaults of 10 mW while running and 2 mW while idle.
This  assumes  that  a  processor  waiting  for
communication stalls in an idle mode and consumes a
much smaller amount of power than a processor running
and performing computation.

The performance data in Figure 7, as indicated by the
number of cycles, is identical to that in Figure 5, with
the  number  of  total  cycles  required  to  execute  the
algorithm  decreasing  as  processors  are  added.   The
profile of the power consumption is very similar to the
speedup in Figure 5, and this is to be expected.  Because
the work is merely being shifted to other processors, the
total  power  consumed  should  track  the  processor
utilization.

Figure 6:  AES utilization profile for nine nodes.
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Figure 5:  Execution cycles and speedup as
processors are added.
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One small effect is seen in the 'plateau' region between
processors six and ten.  Here processors are added, but
the overall  performance does not increase.  While the
utilization stays constant, the power increases slightly.
This is due to the power consumption overhead of the
idle processors.  The added processors, even if they are
kept idle and are not contributing to the calculation, still
draw some power.

Figure  8  shows  a  graph  of  the  the  total  energy
consumed, calculated by multiplying the execution time
(cycles)  by  the  average  power  consumption  in
milliwatts.   This  graph  indicates  that  there  is  no
particularly large  power  penalty to  adding processors.
The  inefficiencies  in  the  six  to  ten  processor  range,
where new processors are added which do not contribute
to an increase the speed of the calculation, are seen as
the slight rise in this region.

What  is  most  notable  is  the  relatively  stable  overall
energy consumed.  Even in this relatively coarse grained
calculation,  the  overall  energy  consumed  varies
approximately  ten  percent  from  the  average.   And
similar to the data in Figure 6, the addition of processors
six though ten did little to increase the overall system
performance, while incrementally decreasing the power
efficiency.

This  trend  reverses  itself  fairly  drastically  as   the
workload  becomes  re-balanced  when  the  eleventh
processor is added.  The performance not only increases
relatively steeply, but the total energy consumed by the
calculation actually decreases.  This is due to the large
increase  in  the  overall  efficiency  of  the  processors,
reducing the cumulative overhead.

7.  CMP and Power Consumption
While the AES implementation is very illustrative of the
strengths of  the  multiprocessor  approach  to  managing
performance, some additional features of this approach

provide even greater flexibility and even lower power
consumption.

First, unlike fixed hardware solutions, this approach can
dynamically  change  the  number  of  processors  used,
varying the  performance  and  power  in  a  fairly  linear
fashion.   This  sort  of  detailed  power  management  is
difficult  to  achieve  in  systems  with  fixed  hardware
resources.

A second  feature of this approach is that it is possible to
add  processors  and  keep  the  level  of  performance
constant.  This allows a fairly linear reduction in clock
speed.   In  the  case  of  the  AES  algorithm,  eleven
processors  could  perform  the  algorithm  at  the  same
speed as a single processor, but at approximately one-
seventh the clock speed.

In the previous graphs, the clock speed was assumed to
be a constant.  But in most modern microprocessors, the
clock speed can be adjusted.  In addition, at these lower
clock speeds, many modern processor cores can be run
at a lower voltage.  And because power consumption is
proportional to the voltage squared, the power savings
can be dramatic, even as hardware is added in the form
of more processor cores.

Figure  9  shows  the  power  consumption  of  the
ARM1020E processor from Samsung [20].  Note that as
the clock speed is increased, the voltage must also be
increased from 0.7V at 400 MHz to 1.1V at 1200 MHz.
This  factor  of  three  increase  in  clock  speed  and
performance  results  in  a  factor  of  seven  increase  in
power  consumption,  given  that  the  voltage  must  rise
with the clock frequency.

A similar effect can also be seen if system performance
is  held  constant  and  processors  are  added.   As  the
additional processors raise the level of performance, the
clock speed can be lowered.  In the general case, this is
simply  trading  the  power  consumption  rate  for
performance,  as  described  in  the  AES demonstration.
However, if along with this lowering of the clock speed,

Figure 8:  Total energy consumed.
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Figure 7:  Performance and power consumption as

processors are added.
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the  voltage  is  also  lowered,  additional  power  savings
can be realized.

In  the  case  of  the  ARM1020E,  a  single  processor
running at 1200 MHz has the same level of performance
as three processors running at 400 MHz.  But the single
processor at 1200 MHz will consume 1800 mW, while
the  three  combined  400  MHz  processors  will  only
consume 780 mW.  This reduces the power consumption
by a factor of 2.3, while keeping performance constant. 

Even if the utilization of these processors is less than
100%, reducing the power consumption by more than a
factor  of  two  is  noteworthy.   Particularly  because  it
occurs  by more  than tripling the  amount of  hardware
used  by  the  system  and  providing  a  flexible,  fully
programmable system.

9.  Managing Software
The idea of building hardware with dozens, hundreds or
even thousands of processors is not difficult to imagine.
In fact, the era of such embedded designs has already
begun.   While  the  hardware  techniques  are  clearly
within  the  grasp  of  today's  tools  and  technologies,
application  software  development  will  remain  the
challenge.

The  success  of  application  development  will  depend
heavily not only on sufficiently powerful tools, but also
on techniques to manage the increased complexity of the
software.   Many  large-grained  CMP  architectures  for
desktop processing currently use a parallel task or thread
model.   Here,  the  operating system  allocates tasks  or
threads  to  the  various  processors.   This  assumes  the
system  will  have  a  significant  amount  of  task-level
parallelism and that  the communication between these
tasks is either very limited or nonexistent.

The  CMP  approach  of  port  connected  arrays  of
processors  puts  further  demands on  the  software,  but
also has the potential to provide new levels of flexibility
and  performance.   This  approach  takes  more  of  a
hardware view of the world, where data is processed by
one unit, then partial results passed on to other units for

further processing.  This style of programming not only
permits extraction of very large amounts of parallelism
(as can be seen in hardware implementations), but it also
provides  a  level  of  flexibility  unavailable in  fixed
hardware solutions.

Such a  programmable  solution can be  re-programmed
and re-defined at any time. This allows systems, even
fielded systems, to be upgraded to repair bugs, decrease
power  consumption,  increase  performance  and  add
functionality.  In fact, upgrades may optimize some or
all  of these parameters simultaneously.  This not only
extends  product  lifetimes,  but  should  reduce  time  to
market.  In addition to the simplification of the hardware
design  effort,  early  systems  can  be  released  with  a
foreknowledge that they will be enhanced via upgrades.

Finally, the implementation of algorithms such as AES
has  led  to  the  exploration  of  other  issues  in  the
management  of  software  for  such  large  scale  parallel
systems.   One  particular  problem is  the  allocation  of
software routines to the processing nodes.

At  the top  level,  techniques  from hardware are  again
borrowed.  A form of 'floor planning' permits blocks of
processors  to  be  allocated  to  particular  tasks.   For
instance,  in  the  case  of  AES,  a  block  of  eleven
processors  could  be  allocated  for  encryption  of  a
channel, and eleven more for the decryption.  These 22
processors may or may not all  be used to perform the
task at hand, but they can be physically reserved.

Similarly,  the  mechanics  of  loading  particular
executable  code  onto  specific  nodes  can  become  a
chore.  With dozens or more nodes, having a  separate
object for each quickly becomes difficult to manage.  As
in the AES example, we have favored a technique of
'parameterization' where identical code is loaded into all
nodes,  and run-time parameters are used to define the
detailed functionality.

This is not only similar to function call  parameters in
software  and  parameterized  macros  in  hardware,  but
also has interesting analogs in biology.  In an organism,
each cell contains all of the same digital code (DNA), no
matter what its function.   The process of 'differentiation'
permits cells to take on more specialized roles, usually
based on  signals  from  neighboring  cells.
Parameterization  uses  a  very  similar  technique  of
providing  data  to  neighboring  processors  to  not  only
manage  the  software  complexity,  but  to  provide  a
variety of functions for each processor.

10.  Conclusions
Today,  it  is  possible  to  build  and  program  devices
containing  thousands  of  processors.   Even
reconfigurable logic devices such as FPGAs can easily
support  hundreds  of  soft  processor  cores  in  a  single

Figure 9:  Power and clock speed for the
ARM1020E.
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device.   This  provides  the  potential  for  thousands  of
MIPS of computing power, programmed in traditional
high level languages.  To make this approach even more
attractive,  it  operates  at  a  power  efficiency  that  is
significantly higher than the approach used by existing
uniprocessors.

While  the hardware  is  relatively straight  forward,  the
software  for  such  systems  will  continue  to  be  a
challenge.  Tools which provide a high level of visibility
into the internal workings of such  architectures will be
necessary.   And these tools must be well designed to
present the large amount of information generated at run
time by such parallel systems.

Lastly,  the  programming  techniques  used  to  exploit
these  high  performance  systems  will  be  crucial.
Techniques  that  leverage  existing  work  and  have  a
theoretical  basis  similar  to  existing popular  languages
and  styles  help  make  the  transition  to  configurable
multiprocessing easier.  While the hardware trends are
clear  in  the  microprocessor,  ASIC  and  even FPGA
areas,  how software  supporting such systems emerges
will  define  the  cost  and  rate  of  acceptance  of  these
systems.
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