
Multicore Devices: A New Generation
of Reconfigurable Architectures

Steven A. Guccione
Cmpware, Inc.

Austin, TX (USA)
Steven.Guccione@cmpware.com

Abstract

For two decades, reconfigurable computing systems
have provided an attractive alternative to fixed
hardware solutions. Reconfigurable computing systems
have demonstrated the low cost and flexibility of a
software solution combined with the high performance
of fixed hardware. For a variety of practical reasons,
much of the work in this area focused on commercial
FPGA devices as the underlying hardware platform.
Recently, several new designs have diverged from the
bit-level, circuit-oriented architectures of FPGAs and
produced a variety of architectures more suitable for
computation and high level language programming.
These new highly parallel architectures contain a
relatively large number of programmable cores, each
approaching the complexity of a traditional
microprocessor. Today such devices can be found in
popular consumer electronics including game consoles
and desktop PC graphics controllers as well as a new
generation of supercomputers. These new devices,
often described using the generic term 'multicore'
represent the latest phase in the evolution of
reconfigurable systems. Like earlier reconfigurable
systems they promise very high performance at
relatively low power with high levels of
programmability. These new systems also feature
software development tools geared more toward
traditional high level language programming than the
hardware design orientation found in earlier
generations of reconfigurable systems.

1. Introduction

Multicore devices have very recently emerged as a new
architectural standard across a wide variety of traditional
systems. Such multicore devices come from a variety of
sources and are implemented in a variety of ways. They
all tend to have the same motivations for opting for a
multicore implementation. These are: power,
performance and price.

Power: The initial motivation for the move to multicore
in many systems is power consumption. High
performance systems have reached the limits of heat
dissipation technology and have opted to do more work
by using a larger number of slower, but more efficient
processor cores. On the other end of the spectrum, low
power devices, typically for handheld or portable
operation have opted for this same approach to further
drive down already low power consumption levels.

Performance: Architectural techniques for accelerating
traditional uniprocessor performance have, over time,
produced diminishing returns. More and more
transistors have been consumed to produce lower and
lower performance gains. Additionally, clock speeds
have plateaued somewhere near 4 GHz and do not
appear to be going significantly higher. With the two
major sources of performance improvement suddenly no
longer available, other techniques have been required to
achieve traditional levels of performance gains in new
generations of devices. Using multicore techniques, a
doubling the number of cores, for instance, potentially
doubles the performance of a device. This has become
the standard technique for increasing performance in
modern processors.

Price: the cost of designing and verifying a complex
processor architecture with one billion or more
transistors has become too difficult and expensive. With
a multicore approach, a repeated array of identical cells
greatly reduces the design and verification effort.

For these reasons, multicore devices can now be found
in a very wide variety of areas. In addition, these
devices have all emerged over a relatively short period
of time. This has led to a less inclusive view of the
existing multicore landscape, with different application
areas focusing on their own multicore variants. While
multicore devices are found in a diversity of areas
ranging from System-on-Chip (SoC) devices, Graphics
Processing Units (GPUs) and desktop and server CPUs,
all of these device architectures share a common
architectural approach.

mailto:Steven.Guccione@cmpware.com

One definition of a multicore device is: a programmable,
explicitly parallel hardware device. These three
elements define the basic attributes of a multicore
device. Taken singly they are:

Programmable: A multicore device must be
programmable. Each unit in a multicore device should
be configurable via software. Collections of fixed
hardware units do not meet the criteria to be considered
a multicore device.

Explicitly Parallel: While there are many conceivable
hardware devices which operate in parallel, the
parallelism must be explicit and exposed to the user.
Systems which may operate at high levels of
performance and contain high levels of internal
parallelism are not necessarily considered multicore
devices, unless the user has control over the parallel
operation.

Hardware device: Finally, multicore devices are taken
to be single, integrated, usually single die devices.
Systems which may be explicitly parallel and
programmable but are constructed of multiple devices
would be classified as traditional multiprocessors, not
multicore multiprocessors.

Given this definition a range of modern processing
devices can claim to be multicore devices.

2. Trends in Multicore Devices
From this definition of multicore, a large number of
processing devices covering a wide range of
applications fir the definition of a multicore device. In
many cases, such as servers and desktops CPUs, the
term 'multicore' is widely used and these devices are
popularly identified as multicore devices. In some other
architectures such as Graphics Processing Units (GPUs),
the term 'multicore' is found less frequently. These
devices do, however, fit the general definition of
multicore and are increasingly being identified as such.

Device Basic Cell Cells
FPGA 1-bit LUT 100,000s

ALU Array Integer ALU 100s

GPU FP ALU 100s

Server / Desktop CPU 4-8

SoC CPU 10s

Massively Multicore CPU 100s

Table 1: Multicore architectures.

Table 1 gives a general listing of the modern processor
architectures that fit this definition of a multicore
device. The graph in Figure 1 demonstrates the trends

from Table 1. The notable trend in the basic cell of the
multicore devices is the increase in the size of the
processing core, with a plateau being reached as the core
has become a full CPU. While there is considerable
variation in core sizes depending on architecture and
implementation, the values used in Figure 1 are relative
estimates of core sizes. At one extreme FPGAs are
composed of single bit Look Up Tables (LUTs), on the
other extreme full 32-bit of even 64-bit microprocessor
cores are used as cells in the multicore architecture.

Between these two extremes, a number of devices have
opted for cells that resemble the Arithmetic and Logic
Units (ALUs) found inside of may processors. These
ALUs are more dense than the FPGA LUTs, but do not
contain the more complex control features of CPUs. For
this reason, the cores in these devices tend to operate
less independently than CPU based multicore
architectures and more often resemble very coarse
grained FPGAs or Single Instruction Multiple Data
(SIMD) architectures.

The second trend in multicore devices is the total
number of cores in a device. This defines the amount of
parallelism and the potential overall performance of the
device. While this number varies somewhat depending
on the implementation technology, the general trend has
tended to be the use of increasingly complex cores, but
fewer in number. While FPGAs may have 100,000
LUTs, a multicore server device may have as few as two
CPU cores.

The graph in Figure 1 indicates that this downward trend
in the number of cores appears to have reached a low
point and has begun to rise. As CPUs have been
universally adopted as the core of choice, the trend is to
continue to increase the number of cores. Of course,
each of these types of architectures can still be found in
active use, and the number of cores in each continues to

Figure 1: Granularity and parallelism in multicore
devices.

FPGA ALU_Array GPU Serv er SoC MMP

1

10

100

1000

10000

100000

Core Size
Cores

increase proportionally. While it can be expected that
the number of CPU cores in a server will continue to
increase, it may also be expected that the number of
LUTs in an FPGA will also continue to increase, and at
a similar rate.

2. Reconfigurable Computing
One feature of modern multicore devices is that they
have emerged almost simultaneously in a variety of
otherwise unrelated architectural areas. In many ways,
each area has only begun to recognize the similarities
with the other branches of the multicore family.

While it may be somewhat controversial to point to a
single ancestor of each of these devices, it is useful to
consider the FPGA device as used in reconfigurable
computing to be the early ancestor of today's modern
multicore devices. In particular, reconfigurable
computing addressed the issues of software and
performance in ways similar to those being confronted
by the users of today's multicore architectures.

Architecturally, an FPGA can be viewed as a multicore
device with its LUTs serving as the cores. While these
cores are extremely simple, they are highly
programmable and permit arbitrarily complex
algorithms to be implemented using software. The
levels of performance in reconfigurable computing
systems also indicate the ability to exploit high levels of
parallelism, at least for a certain range of applications.

While the hardware architecture of FPGAs fits the
definition of a modern multicore device, its original
purpose was to implement gate-level hardware designs.
For this reason , the software tools for FPGAs are highly
oriented toward circuit design. Most of the effort in
reconfigurable computing has involved raising the level
of abstraction of the software tools to permit high-level
language programming of FPGAs.

While the hardware is parallel at the bit level, most of
the algorithm implementations ignore this fine level of
granularity. Groups of LUTs are used to produce larger
blocks which are typically then used in parallel. For this
reason even an FPGA with a potential bit level
parallelism of many thousands of units will typically
only achieve algorithms speedups of 10 to 100. Higher
levels of parallelism can be extracted, but such
algorithms and implementations were relatively rare.

A large body of work exists describing various
approaches and implementations of reconfigurable
computing systems. Major conferences on this subject
contain more information on work in this area [1][2][3].

3. ALU Arrays
As the popularity of FPGA devices for reconfigurable
computing emerged, many recognized that the
architecture and programming tools were not well suited
to the problems being solved with this system. For the
most part, Digital Signal Processing (DSP) and related
arithmetic operations were being implemented in bit
level FPGA devices.

This led to a relatively large number of new, coarser
grained architectures similar to traditional FPGA
devices being designed and implemented. Table 2 gives
a list of some of the more popular ALU array
architectures offered by a variety of companies. What is
perhaps most interesting is that all of these devices have
very close roots to university research programs.

While hardware devices for FPGA-based reconfigurable
computing was dominated by a few large, established
commercial semiconductor companies, the ALU arrays
represented a significant change. Nearly every ALU
array offering was from a traditional small start-up
venture.

Device ALU bits ALUs
PACT XPP 24 64

Rapport KiloCore 8 259

Elixent D-Fabrix 4 (IP core)

Chameleon CS2112 32 80

IPFlex DAPDNA 16 955

Systolix PulseDSP 16 144

MathStar FPOA 32 256

SPI Storm-1 32 960

Table 2: ALU arrays.

One goal of the new wave of ALU array architectures
was to simplify the software tools used to perform
computation. The larger grained devices promised to
make mapping of computation to the hardware simpler.
While there appeared to be some gains, it was perhaps
the interconnection routing between the ALUs and its
associated software that was a more significant
challenge than the mapping of operations to ALUs. No
significant improvement in software tools was
recognized in these devices, while traditional FPGA
devices continued to improve in density and cost, while
their tools also continued to evolve.

While ALU Arrays represented the first break from
LUT-based FPGA devices and the first step toward
multicore, it was difficult for these devices to compete
with existing FPGA devices. In particular, the high

sales volume and aggressive process technology of
FPGA devices made up for their other limitations and
made ALU arrays difficult to justify in most designs.

There was, however, one interesting exception. Some
ALU arrays were able to demonstrate superior power
consumption versus performance numbers when
compared to FPGAs. While many of the ALU Array
companies struggled, it appears that the ones which
featured low power consumption fared better.

4. Early Multicore Devices
While reconfigurable computing devices were
increasing their granularity and moving toward ALU
array architectures, traditional DSP vendors began to
explore a new approach of putting more than one
processing unit on a device.

Device CPUs DSPs
T.I. OMAP 1 1

Xilinx Virtex-2 Pro 4 0

QuickSilver ACM 32 32

Cradle CT3400 8 6

Table 3: Early multicore devices.

The motivations here were typically for power reduction
and performance improvement in a DSP application
area. Perhaps the first popular multicore device was the
Texas Instruments OMAP, which contained a single
RISC CPU and a single DSP processor. This device
was used in a very large number of mobile phones and
made such an approach the standard in low power
telecommunications equipment.

Also in this area, the QuickSilver Adaptive Computing
Machine and the Cradle CT3400 were the next step in
the evolution of multicore devices. These systems
aggressively put on the order of a dozen high
performance cores into a single device.

Lastly, the FPGA vendor Xilinx produced a device
called the Virtex-2 Pro which contained four PowerPC
cores embedded in their FPGA fabric. This unique
architecture was aimed at the networking market and
was for equipment such as telecommunications switches,
were low power was not a crucial issue.

While the T.I. OMAP device was extremely popular, the
other early multicore devices did not fare so well.
Because the T.I. device targeted a very narrow
application area, software libraries eased software
development issues common to such new and unusual
architectures. The OMAP was also the simplest
possible multicore device, with only two cores, which
also appears to have aided in its acceptance.

The other devices, while more sophisticated and higher
performance, typically suffered from inadequate
software development tools, or at least the perception of
inadequate software development tools. Perhaps the
lesson of these early multicore devices was the difficulty
of writing software for such architectures.

5. Multicore in Networking
While the early Virtex-2 Pro multicore device from
Xilinx found limited success in the networking area, the
idea of focusing on a single narrow application area
became the approach for the next wave of multicore
devices. Perhaps most notable, the area of networking
was one of the first to see a large number of multicore
devices emerge.

Unlike the early DSP multicore devices, the networking
applications targeted multicore devices typically by
using many copies of a single popular CPU architecture
for the core. It is worth noting that the multicore
networking devices came from a wide variety of sources.
This includes large and small companies, including
start-ups as well as traditional telecommunications
equipment manufacturers.

Table 4 gives a list of some of the prominent multicore
devices used in networking. This continues to be a
popular approach to implementing networking hardware
and this list continues to expand rapidly.

Device Core Type Cores
Cisco CRS-1 Tensilica 192

PA Semi PowerPC 2

Raza XLR700 MIPS64 8

Freescale MPC8572 PowerPC 2

Broadcomm BMC1250 MIPS64 4

Table 4: Networking multicore devices.

It is also worth noting that these devices tended to
compete directly with the earlier generation of multicore
architectures, in particular, FPGA devices. While these
devices were still somewhat more difficult to program
than traditional single core devices, their uniform core
structure and the similarly uniform application area
made software tools less of a problem. In fact, most of
these devices offered no particular software support for
multicore devices. The compilers tended to be identical
to the single core compilers and tools for earlier single
core systems.

6. Game Consoles
Game consoles occupy a somewhat unique niche in
consumer electronics. While these tend to be full
computing systems similar to a workstation or personal

computer in hardware structure, they are used for a
much narrower application area: game playing.

Because the application area is so narrow, these systems
have tended to focus on performance, in particular
graphics performance. And because these systems
resemble consumer appliances, other features such as
low power and reliability are very important. For these
reasons, major game consoles have shifted, somewhat
quietly, to multicore processors.

Perhaps the most prominent multicore game console is
the Sony Playstation3. It is powered by the 'cell'
processor, which was jointly developed by Sony,
Toshiba and IBM ('STI') in a multi year project that was
estimated to have cost hundreds of millions of dollars.

The Cell processor contains a PowerPC core and eight
floating point cores. Each of these eight floating point
cores are 4-way SIMD, giving a total of 32 floating
point processors operating in parallel.

All of this floating point performance was intended to
accelerate video game play, in particular graphics.
While the Cell processor is capable of performing many
graphics chores at very high speed, the final Sony
Playstation3 design opted to add a traditional graphics
controller, allowing the Cell processor resources to be
freed for other tasks.

As with other multicore systems, the Cell was more
difficult to program than other traditional game
consoles. This led to an unexpectedly slow release of
software titles, at least initially. But like other niche
multicore solutions, the relatively low number of game
programmers and the relatively narrow area of
application seems to have helped make the Cell a
powerful contender in game consoles.

There has been an attempt to use the Cell processor for
other applications, but these have been slow to
materialize. Some users of the Playstation3 have begun
to use the game console itself as a general purpose
development workstation. Linux has been available on

the Playstation3 for several years and impressive results
of the Folding At Home project indicate that very large
amounts of computing power are available from
processors such as the Cell.

Another major game console, the Microsoft Xbox 360,
also uses multicore technology, but somewhat less
aggressively. The Xbox 360 uses three PowerPC cores
with some vector processing enhancements. This
architecture does not appear to have had the same
barriers to adoption as the Sony Playstation3, but this is
perhaps due to the simple architecture of the Xbox 360.

7. Desktop and Server Processors
Perhaps the most prominent and widely discussed move
to multicore has been in the traditional desktop and
server devices. All of the major manufacturers of
desktop and server CPUs have shifted their high end
designs to multicore.

These devices have taken a relatively conservative
approach and have gone multicore somewhat
reluctantly. Desktop and server processors are almost
exclusively concerned with performance. Historically,
performance has been increased by the doubling of the
number of transistors in a design every 18 months
(popularly referred to as "Moore's Law") by producing
smaller transistors, and the increasing of the clock speed
of these smaller transistors.

Device Core Type Cores
AMD Phenom X4 x86 4

Intel Core 2 Duo x86 4

Sun UltraSPARC T2 SPARC 8

Table 5: Sever and desktop multicore devices.

Sometime near the turn of the new millennium, the
power consumption of traditional single core processors
began to limit the increases in performance. A this time
all major manufacturers of desktop and server
processors began to build 'dual core' processors

Figure 2: The evolution of multicore architectures.

containing two identical processor cores. The process
continues with four and eight cores now standard for
high performance devices.

While these server and desktop processors contain
multiple cores, much of the software which runs on
these devices cannot take advantage of these multiple
cores. While operating system support can help
distribute task level parallelism across cores, this type of
parallelism is difficult to find on many desktop systems.

Server systems, on the other hand, are quite capable of
making use of multiple cores running multiple tasks.
Their relatively low power considering their high
performance have made these devices a favorite of data
centers and installations which require large amounts of
server hardware.

Unfortunately, one of the primary bottlenecks of
traditional single core devices was the memory - CPU
interface, often referred to as the 'von Neumann
bottleneck'. While the number of cores and the work
they perform continues to increase dramatically, the
bandwidth from main memory to the multicore CPU
device has remained essentially unchanged. In addition
new problems such as 'cache pollution' in multicore
devices that share caches has become recognized as a
problem with these new architectures.

8. Multicore SoC
Yet another place where multicore has taken hold
quietly is in System On Chip (SoC) devices. These are
custom silicon devices, typically for some commercial
embedded application. A common example would be
the processor in an MP3 player.

The move to multicore by SoC devices has been
motivated by some slightly different factors than other
multicore devices. As with desktop and server devices,
power is a prime concern for many SoC devices. In a
technique similar to the one used on these larger
machines, SoC devices have used multicore as a way to
reduce power consumption.

In a typical CPU, the clock speed is proportional to the
voltage. Increasingly higher voltages are required to
increase the clock speed, and hence, the processor
performance. But increasing the voltage also increases
the power consumption, and in a non-linear fashion. A
doubling in clock speed results in significantly more
than doubling the power consumption in most CPUs. So
if the clock speed can be cut in half and two processors
effectively used to share the processing duties, a
significant power savings can be realized. Many SoC
devices have begun to take this approach.

Additionally, many SoC devices use multicore as a way
to simplify hardware design and reduce risk. It may be

possible to implement some part of an algorithm, for
instance, using a dedicated processor as opposed to a
hard-wired Intellectual Property (IP) core. This will not
only save the effort of designing, implementing and
verifying this IP core, it will also produce a
programmable solution in place of a fixed one. This
permits bugs to be fixed, even in fielded systems.

Additionally, this styler of design can provide some
obsolesce-proofing, since new features, including
performance and power consumption enhancements can
be added on to the system via a software upgrade long
after the systems has been deployed. A fixed hardware
solution would require the replacement of hardware,
which may be difficult or impossible.

Again, it is notable that this benefit of emerging
multicore SoCs covers many of the same themes of
earlier reconfigurable computing systems.

9. Massively Multicore
While multicore SoC devices are aimed at a particular
narrow application area and server and workstation
devices are aimed at general purpose processing, an
emerging multicore device architecture attempts to
cover the area between these two approaches. These
devices typically feature dozens or even hundreds of
cores and may soon contain thousands. While no
standard term exists for this group of devices they will
be referred to here as massively multicore devices.

Device Core Type Cores
Azul Vega2 Java 48

Ambric Am2000 Custom 336

picoChip cp200 16-bit DSP 248

Tilera Tile64 MIPS 64

Boston Circuits gCore ARC 16

Intellasys SEAforth Custom 24

Plurality HAL-256 ? 256

Parallax Propeller Custom 8

ElementCXI ? ?

Coherent Logix ? ?

Table 6: Massively multicore devices.

Today there are many such systems being developed,
primarily by venture capital backed start-up companies.
Table 6 gives a list of this generation of massively
multicore devices. This list is not complete and it is
expected that many similar companies will produce
similar devices in the near future.

Unlike multicore SoC devices, massively multicore
architectures do not target a specific application or even
application area. The goal of most of these devices is to
provide high performance combined with low power for
a wide range of applications. While some of these
devices may focus on a specific market for business
reasons, their architectures are all general purpose and
fully programmable.

While general purpose, these massively multicore
devices are not aimed at traditional desktop and server
style general purpose computing. They will typically be
used to provide high levels of performance in
applications that could otherwise not use a
programmable solution. This ability to implement a
variety of programmable applications using a single
device is very attractive in that it eliminates the need to
design and implement a custom solution. Implementing
such a custom solution is not only very expensive, but
can delay a product's time to market substantially.

Massively multicore architectures hope to provide a
superior solution over custom Application Specific
Integrated Circuits (ASICs) and even FPGAs for many
applications. Clearly the performance of these devices
can be as much as one to four orders of magnitude
increase in raw performance over traditional single core
programmable solutions. The ability to purchase such
devices commercially should provide a significant cost
and time to market advantage for designers of embedded
high performance systems.

10. Graphics Processing Units
Graphics Processing Units (GPUs) were originally
designed to accelerate graphics applications on
workstations and personal computers, and increasingly
on other devices such as mobile phones. GPUs have
been commercially available for several years, but have
only recently begun to evolve into systems which clearly
fit the definition of multicore. While many modern
GPU devices fit the definition of massively multicore
devices, they are treated as a separate category because
of their long history and the tendency to use these
devices in a very narrow application area.

While there have been a large number of makers of
graphics acceleration hardware in recent years, there are
currently two major manufacturers of these devices:
Nvidia and ATI. Both have relatively similar products
and both are making inroads into more general purpose
processing.

Table 7 gives a brief overview of the current offerings
from GPU vendors. While earlier architectures were
very focused on performing standard graphics
operations, newer devices have provided architectural

enhancements and even software support to perform
more general purpose computations.

These systems tend to be some of the highest performing
in the multicore landscape with all supporting floating
point arithmetic operations. These devices tend to
consume relatively large amounts of power, which also
separates them from many of the current massively
multicore devices.

In addition to the GPU devices, similar architectures not
specifically oriented toward graphics are also emerging.
These devices are aimed at the high performance and
scientific computing areas and also feature a large
number of floating point cores on a single device. Two
examples of these devices are the ClearSpeed CSX600
and the GRAPE-DR device.

Device Core Type Cores
Nvidia GeForce 32-bit FP 112

ATI Firestream 64-bit FP 320

ClearSpeed CSX600 64-bit FP 96

Grape-DR 64-bit FP 512

Table 7: GPU and GPU-like devices.

The ClearSpeed device is commercially available, while
the GRAPE-DR is a component used in a supercomputer
project sponsored by the Japanese government. Because
of the high rates of computation, it is expected that
similar devices will emerge to address the needs of the
high performance computing market.

11. Soft Multicore
The most recent and still emerging multicore category is
soft multicore. This approach uses an FPGA device
configured as a multicore processor. While certainly
much less efficient that custom ASIC multicore
implementations, this technique is attractive for a variety
of reasons.

First, existing FPGA technology permits literally
hundreds of simple RISC CPU cores to be implemented
in a single FPGA device. This provides thousands of
MIPS of raw performance in a single device.

In addition, the configuration of the FPGA as a
multiprocessor provides a new level of abstraction. It is
no longer necessary to view the device as a collection of
LUTs. In fact, it may no longer be necessary to use the
hardware design tools supplied by the FPGA vendor.
Once the multiprocessor is implemented, standard
software development tools such as high level language
compilers may be used in much the same way as with
any other multicore device.

Finally, the reprogrammability of the FPGA device
opens the door for a variety of enhancements
unavailable in fixed multicore architectures. Density
may be improved and power consumption reduced, for
instance, by replacing one or more soft CPU cores with
a hard-wired functional core. Similarly, the soft CPUs
in the FPGA can be enhanced by adding application
specific instructions, for instance, to increase
performance.

It is interesting to note that such soft multicore devices
bear a close resemblance to earlier reconfigurable
computing applications. A number of cores are used to
implement some application in a parallel fashion. The
only difference with the soft multicore approach is that
the cores themselves may be programmable CPUs. This
two-level programmability adds a new dimension of
flexibility and potential performance to FPGA-based
systems.

Soft multiprocessing also expands the sorts of
applications that may be suitable for FPGA
implementation. In spite of may theoretical claims of
generality, reconfigurable computing systems have
tended to be used in fairly narrow application areas
involving highly regular and highly parallel algorithms.
The use of soft CPUs relaxes this restriction somewhat
and should permit the implementation of algorithms that
may not have so regular a structure.

Soft multiprocessing is only now emerging, but its
advantages may make it a popular design methodology
for high performance computing with FPGA devices. It
is also notable that while emerging multicore devices
appear to be quickly encroaching on the traditional
FPGA high performance application space, soft
multiprocessing may be able to reclaim these
applications to FPGA hardware platforms.

11. Multicore Tools
While the focus of this paper is to survey the current
landscape in multicore architectures, some mention of
software tools is in order. As has often been the case in
high performance computing, hardware has led software.
While a wide variety of multicore architectures has been
launched in the market, the offerings for software tools
have been lacking.

Most of the effort seems to be in the area of GPUs.
Both Nvidia and ATI have tool sets to assist in
implementing high performance computing applications
for their GPUs. In addition, the software company
RapidMind has commercially offered similar GPU
oriented tools. RapidMind also appears to be extending
its offering to popular multicore devices, in particular in
the server and desktop area.

Each of the many small companies offering multicore
devices offer some programming environment. None
have caused any particular excitement in the wider
programming community. After several years of
deployment of multicore hardware it is becoming
accepted that there will be no 'magic bullet' in the form
of an automatic compiler or parallelizing tool. The
emphasis at this stage seems to be on minimizing the
learning curve and beginning training of programmers in
the use of multicore. In general this means the explicit
expression of parallelism in the software.

While many are pressing for new languages that aid in
the expression of parallelism, there is also much
resistance to attempts to require the use of new
languages. It is notable that the multiprocessor world
has faced similar issues for decades and has not moved
toward new languages.

But some lessons have been learned from the
multiprocessor experience. Libraries to produce and
control parallel threads or objects and to explicitly
manage communication across processors is gaining
some attention. But it is not clear if the needs of system-
level multiprocessors overlap sufficiently with those of
multicore. In particular, the core interconnection
bandwidth for single multicore device is so much higher
than that of traditional multiprocessors and the memory
and operating system environments so different, that it is
uncertain if this approach will be productive.

Finally, even the notion of coarse grained parallelism
has come into question. While the most popular model
for parallelism today is the 'threads' model, it is not clear
that it will translate well into large numbers of cores
with very high bandwidth communication channels. In
particular, the reliability of such an approach has been
called into question [16].

12. Conclusions
Multicore devices are emerging from a variety of areas
and are targeting a wide variety of applications. There
are some notable trends, in particular the increasing
numbers of cores. Somewhat troubling, however, it the
lack of investment in multicore software as compared to
the apparent investment in multicore hardware [18][23].

Unlike other technologies, multicore performance is
highly sensitive to software implementation. Writing
software one particular way as opposed to another can
have a dramatic impact on performance. While many
wait for tools to fill this gap, others are opting for
programmer education. Some combination of both is
likely to be the solution that drives multicore forward.
The progress is expected to be evolutionary, rather than
revolutionary.

Other aspects of multicore are just beginning to be
explored. Defect and fault tolerance in particular may
be game-changers. The ability to dramatically improve
silicon yields for large and complex devices is surely
attractive to all makers of multicore hardware. This is
expected to be an active area of research in the very near
future.

11. References
[1] IEEE Symposium on Field Programmable Custom

Computing Machines (FCCM),
http://www.fccm.org/, 2008.

[2] International Conference on Field Programmable
Logic and Application (FPL), http://www.fpl.org/,
2008.

[3] International Conference on Field Programmable
Technology (FPT), http://www.icfpt.org/, 2008.

[4] “Xilinx enhances FPGAs with embedded
PowerPCs”, http://www.eet.com/semi/news/
OEG20020304S0017, March 4, 2002.

[5] “The Future of Microprocessors”, David Patterson,
U. California at Berkeley, June 2001.
http://www.cs.berkeley.edu/~pattrsn/talks/NAE.ppt

[6] Chip Multiprocessing Resources:
http://www.princeton.edu/~jdonald/research/cmp/

[7] The Cmpware Multiprocessor Report,
http://www.MultiprocessorReport.com/, 2008.

[8] Programmability Issues for Multicore Computers
(MULTIPROG), http://www.valimar.it/multiprog/.

[9] Forum on Application Specific Multiprocessor SoC
(MPSOC), http://www.mpsoc-forum.org/index.html

[10] Harry Goldstein, "Cure for the Multicore Blues",
IEEE Spectrum, Volume 44, Number 1, January
2007, pages 40-43.

[11] Richard McDougall, "Extreme Software Scaling",
ACM Queue, Volume 3, Number 7, September
2005, pages 36-46.

[12] Herb Sutter and James Larus, "Software and the
Concurrency Revolution", ACM Queue, Volume 3,
Number 7, September 2005, pages 54-63.

[13] Kunle Olukotoun and Lance Hammond, "The
Future of Microprocessors", ACM Queue, Volume
3, Number 7, September 2005, pages 26-34.

[14] Luiz Andre Barroso, "The Price of Performance",
ACM Queue, Volume 3, Number 7, September
2005, pages 48-53.

[15] Mache Creeger, "Multicore CPUs for the Masses",
ACM Queue volume 3, number 7, September 2005,
pages 63-64.

[16] Edward A. Lee, The Problem with Threads, IEEE
Computer, volume 39, Number 5, May 2006, pages
33-42.

[17] Seth Copen Goldstein, Herman Schmidt, Mihai
Budiu, Srihari Cadambi, Matt Moe and R. Reed
Taylor, "Piperench: A Reconfigurable Architecture
and Compiler", IEEE Computer, Volume 33,
Number 4, April 2000, pages 70-77.

[18] Agam Shah, "Intel Exec: Programming for
Multicore Chips a Challenge", Washington Post,
April 2, 2008, http://www.washingtonpost.com/wp-
dyn/content/article/2008/04/02/AR2008040201520.h
tml

[19] Krste Asanovic, Ras Bodik, Bryan Christopher
Catanzaro, Joseph James Gebis, Parry Husbands,
Kurt Keutzer, David A. Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams,
Katherine A. Yelick, "The Landscape of Parallel
Computing Research: A View from Berkeley"
Technical Report No. UCB/EECS-2006-183,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html, December 18, 2006.

[20] Krste Asanovic, Ras Bodik, Jim Demmel, John
Kubiatowicz, Kurt Keutzer, Edward Lee, George
Necula, Dave Patterson, Koushik Sen, John Shalf,
John Wawrzynek, and Kathy Yelick, "The
Landscape of Parallel Computing Research: The
View from Berkeley 2.0", Manycore Computing
Workshop, June 2007,
http://science.officeisp.net/ManycoreComputingWor
kshop07/Presentations/David%20Patterson.pdf

[21] Jeffrey Dean and Sanjay Ghemawat, "MapReduce:
Simplified Data Processing on Large Clusters",
Google Labs, OSDI'04: Sixth Symposium on
Operating System Design and Implementation, San
Francisco, CA, December, 2004,
http://labs.google.com/papers/mapreduce.html

[22] Brian Hayes, "Computing in a Parallel Universe",
American Scientist, volume 95, 2007, pages
476-480,
http://www.americanscientist.org/content/AMSCI/A
MSCI/ArticleAltFormat/2007102151724_866.pdf

[23] Richard Goering, "Dearth of Tools Could Stall
Multicore Onslaught", EE Times, April 2., 2007,
http://www.eetimes.com/showArticle.jhtml?
articleID=198701494

http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.cs.berkeley.edu/~pattrsn/talks/NAE.ppt

