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Abstract

For  two  decades,  reconfigurable  computing  systems  
have  provided  an  attractive  alternative  to  fixed  
hardware solutions.  Reconfigurable computing systems 
have  demonstrated  the  low  cost  and  flexibility  of  a  
software solution combined with the high performance 
of fixed hardware.  For a variety of practical reasons,  
much of the work in this area focused on commercial  
FPGA  devices  as  the  underlying  hardware  platform.  
Recently,  several new designs have diverged from the  
bit-level,  circuit-oriented  architectures  of  FPGAs and 
produced  a variety  of  architectures more suitable  for 
computation  and  high  level  language  programming.  
These  new  highly  parallel  architectures  contain  a  
relatively  large number of  programmable cores,  each 
approaching  the  complexity  of  a  traditional  
microprocessor.  Today such devices can be found in  
popular consumer electronics including game consoles  
and desktop PC graphics controllers as well as a new 
generation  of  supercomputers.   These  new  devices,  
often  described  using  the  generic  term  'multicore'  
represent  the  latest  phase  in  the  evolution  of  
reconfigurable  systems.   Like  earlier  reconfigurable  
systems  they  promise  very  high  performance  at  
relatively  low  power  with  high  levels  of  
programmability.   These  new  systems  also  feature 
software  development  tools  geared  more  toward 
traditional high level language programming than the 
hardware  design  orientation  found  in  earlier 
generations of reconfigurable systems.

1.  Introduction

Multicore devices have very recently emerged as a new 
architectural standard across a wide variety of traditional 
systems.  Such multicore devices come from a variety of 
sources and are implemented in a variety of ways.  They 
all tend to have the same motivations for opting for a 
multicore  implementation.   These  are:   power, 
performance and price.

Power:  The initial motivation for the move to multicore 
in  many  systems  is  power  consumption.   High 
performance  systems  have  reached  the  limits  of  heat 
dissipation technology and have opted to do more work 
by using a larger number of slower, but more efficient 
processor cores.  On the other end of the spectrum, low 
power  devices,  typically  for  handheld  or  portable 
operation have opted for this same approach to further 
drive down already low power consumption levels.

Performance:  Architectural techniques for accelerating 
traditional  uniprocessor  performance  have,  over  time, 
produced  diminishing  returns.   More  and  more 
transistors have been consumed to  produce  lower and 
lower  performance  gains.   Additionally,  clock  speeds 
have  plateaued  somewhere  near  4  GHz  and  do  not 
appear to be going significantly higher.   With the two 
major sources of performance improvement suddenly no 
longer available, other techniques have been required to 
achieve traditional levels of performance gains in new 
generations of devices.  Using multicore techniques, a 
doubling the number of cores,  for instance, potentially 
doubles the performance of a device.  This has become 
the  standard  technique  for  increasing  performance  in 
modern processors.

Price:  the cost of designing and verifying a complex 
processor  architecture  with  one  billion  or  more 
transistors has become too difficult and expensive.  With 
a multicore approach, a repeated array of identical cells 
greatly reduces the design and verification effort.

For these reasons, multicore devices can now be found 
in  a  very  wide  variety  of  areas.   In  addition,  these 
devices have all emerged over a relatively short period 
of time.   This  has  led to  a  less inclusive view of the 
existing multicore landscape, with different application 
areas focusing on their own multicore variants.  While 
multicore  devices  are  found  in  a  diversity  of  areas 
ranging from System-on-Chip (SoC) devices,  Graphics 
Processing Units (GPUs) and desktop and server CPUs, 
all  of  these  device  architectures  share  a  common 
architectural approach.
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One definition of a multicore device is: a programmable, 
explicitly  parallel  hardware  device.   These  three 
elements  define  the  basic  attributes  of  a  multicore 
device.  Taken singly they are:

Programmable:  A  multicore  device  must  be 
programmable.  Each unit in a multicore device should 
be  configurable  via  software.   Collections  of  fixed 
hardware units do not meet the criteria to be considered 
a multicore device.

Explicitly Parallel:  While there are many conceivable 
hardware  devices  which  operate  in  parallel,  the 
parallelism must be  explicit  and  exposed  to  the  user. 
Systems  which  may  operate  at  high  levels  of 
performance  and  contain  high  levels  of  internal 
parallelism  are  not  necessarily  considered  multicore 
devices,  unless  the  user  has  control  over  the  parallel 
operation.

Hardware device:  Finally, multicore devices are taken 
to  be  single,  integrated,  usually  single  die  devices. 
Systems  which  may  be  explicitly  parallel  and 
programmable but  are  constructed  of multiple  devices 
would be  classified  as  traditional  multiprocessors,  not 
multicore multiprocessors.

Given  this  definition  a  range  of  modern  processing 
devices can claim to be multicore devices.

2.  Trends in Multicore Devices
From this  definition  of  multicore,  a  large  number  of 
processing  devices  covering  a  wide  range  of 
applications fir the definition of a multicore device.  In 
many cases,  such  as  servers  and  desktops  CPUs,  the 
term 'multicore'  is  widely used  and  these  devices  are 
popularly identified as multicore devices.  In some other 
architectures such as Graphics Processing Units (GPUs), 
the  term  'multicore'  is  found  less  frequently.   These 
devices  do,  however,  fit  the  general  definition  of 
multicore and are increasingly being identified as such.

Device Basic Cell Cells
FPGA 1-bit LUT 100,000s

ALU Array Integer ALU 100s

GPU FP ALU 100s

Server / Desktop CPU 4-8

SoC CPU 10s

Massively Multicore CPU 100s

Table 1:  Multicore architectures.

Table 1 gives a general listing of the modern processor 
architectures  that  fit  this  definition  of  a  multicore 
device.  The graph in Figure 1 demonstrates the trends 

from Table 1.  The notable trend in the basic cell of the 
multicore  devices  is  the  increase  in  the  size  of  the 
processing core, with a plateau being reached as the core 
has  become a full  CPU.  While  there  is  considerable 
variation  in  core  sizes  depending  on  architecture  and 
implementation, the values used in Figure 1 are relative 
estimates  of  core  sizes.   At  one  extreme  FPGAs  are 
composed of single bit Look Up Tables (LUTs), on the 
other extreme full 32-bit of even 64-bit microprocessor 
cores are used as cells in the multicore architecture.

Between these two extremes, a number of devices have 
opted for cells that resemble the Arithmetic and Logic 
Units (ALUs) found inside of may processors.   These 
ALUs are more dense than the FPGA LUTs, but do not 
contain the more complex control features of CPUs.  For 
this reason, the cores in these devices tend to operate 
less  independently  than  CPU  based  multicore 
architectures  and  more  often  resemble  very  coarse 
grained  FPGAs  or  Single  Instruction  Multiple  Data 
(SIMD) architectures.

The  second  trend  in  multicore  devices  is  the  total 
number of cores in a device.  This defines the amount of 
parallelism and the potential overall performance of the 
device.  While this number varies somewhat depending 
on the implementation technology, the general trend has 
tended to be the use of increasingly complex cores, but 
fewer  in  number.   While  FPGAs  may have  100,000 
LUTs, a multicore server device may have as few as two 
CPU cores.

The graph in Figure 1 indicates that this downward trend 
in the number of cores appears to have reached a low 
point  and  has  begun  to  rise.   As  CPUs  have  been 
universally adopted as the core of choice, the trend is to 
continue to increase  the number of cores.   Of course, 
each of these types of architectures can still be found in 
active use, and the number of cores in each continues to 

Figure 1:  Granularity and parallelism in multicore 
devices.
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increase proportionally.  While it can be expected that 
the number of CPU cores in a server will continue to 
increase,  it  may also  be  expected  that  the  number  of 
LUTs in an FPGA will also continue to increase, and at 
a similar rate.

2.  Reconfigurable Computing
One feature  of  modern  multicore  devices  is  that  they 
have  emerged  almost  simultaneously  in  a  variety  of 
otherwise unrelated architectural areas.  In many ways, 
each area has only begun to recognize the similarities 
with the other branches of the multicore family.

While it  may be somewhat controversial  to point to a 
single ancestor of each of these devices, it is useful to 
consider  the  FPGA  device  as  used  in  reconfigurable 
computing to be  the early ancestor  of  today's  modern 
multicore  devices.   In  particular,  reconfigurable 
computing  addressed  the  issues  of  software  and 
performance in ways similar to those being confronted 
by the users of today's multicore architectures.

Architecturally, an FPGA can be viewed as a multicore 
device with its LUTs serving as the cores.  While these 
cores  are  extremely  simple,  they  are  highly 
programmable  and  permit  arbitrarily  complex 
algorithms  to  be  implemented  using  software.   The 
levels  of  performance  in  reconfigurable  computing 
systems also indicate the ability to exploit high levels of 
parallelism, at least for a certain range of applications.  

While  the  hardware  architecture  of  FPGAs  fits  the 
definition  of  a  modern  multicore  device,  its  original 
purpose was to implement gate-level hardware designs. 
For this reason , the software tools for FPGAs are highly 
oriented  toward  circuit  design.   Most  of  the  effort  in 
reconfigurable computing has involved raising the level 
of abstraction of the software tools to permit high-level 
language programming of FPGAs.

While the hardware is parallel at the bit level, most of 
the algorithm implementations ignore this fine level of 
granularity.  Groups of LUTs are used to produce larger 
blocks which are typically then used in parallel. For this 
reason  even  an  FPGA  with  a  potential  bit  level 
parallelism of  many thousands  of  units  will  typically 
only achieve algorithms speedups of 10 to 100.  Higher 
levels  of  parallelism  can  be  extracted,  but  such 
algorithms and  implementations were relatively rare.

A  large  body  of  work  exists  describing  various 
approaches  and  implementations  of  reconfigurable 
computing systems.  Major conferences on this subject 
contain more information on work in this area [1][2][3].

3. ALU Arrays
As the popularity of FPGA devices for reconfigurable 
computing  emerged,  many  recognized  that  the 
architecture and programming tools were not well suited 
to the problems being solved with this system. For the 
most part, Digital Signal Processing (DSP) and related 
arithmetic  operations  were  being  implemented  in  bit 
level FPGA devices.

This  led to  a  relatively large  number of  new, coarser 
grained  architectures  similar  to  traditional  FPGA 
devices being designed and implemented.  Table 2 gives 
a  list  of  some  of  the  more  popular  ALU  array 
architectures offered by a variety of companies.  What is 
perhaps most interesting is that all of these devices have 
very close roots to university research programs.

While hardware devices for FPGA-based reconfigurable 
computing was dominated by a few large,  established 
commercial semiconductor companies, the ALU arrays 
represented  a  significant  change.   Nearly every ALU 
array  offering  was  from  a  traditional  small  start-up 
venture.

Device ALU bits ALUs
PACT XPP 24 64

Rapport KiloCore 8 259

Elixent D-Fabrix 4 (IP core)

Chameleon CS2112 32 80

IPFlex DAPDNA 16 955

Systolix PulseDSP 16 144

MathStar FPOA 32 256

SPI Storm-1 32 960

Table 2: ALU arrays.

One goal of the new wave of ALU array architectures 
was  to  simplify  the  software  tools  used  to  perform 
computation.  The  larger  grained  devices  promised to 
make mapping of computation to the hardware simpler. 
While there appeared to be some gains, it was perhaps 
the interconnection routing between the ALUs and its 
associated  software  that  was  a  more  significant 
challenge than the mapping of operations to ALUs.  No 
significant  improvement  in  software  tools  was 
recognized  in  these  devices,  while  traditional  FPGA 
devices continued to improve in density and cost, while 
their tools also continued to evolve.

While  ALU  Arrays  represented  the  first  break  from 
LUT-based  FPGA  devices  and  the  first  step  toward 
multicore,  it was difficult for these devices to compete 
with  existing  FPGA  devices.   In  particular,  the  high 



sales  volume  and  aggressive  process  technology  of 
FPGA devices made up for their other limitations and 
made ALU arrays difficult to justify in most designs.

There was, however,  one interesting exception.  Some 
ALU arrays  were able  to  demonstrate  superior  power 
consumption  versus  performance  numbers  when 
compared to FPGAs.  While many of the ALU Array 
companies  struggled,  it  appears  that  the  ones  which 
featured low power consumption fared better.

4. Early Multicore Devices
While  reconfigurable  computing  devices  were 
increasing  their  granularity  and  moving  toward  ALU 
array  architectures,  traditional  DSP  vendors  began  to 
explore  a  new  approach  of  putting  more  than  one 
processing unit on a device. 

Device CPUs DSPs
T.I. OMAP 1 1

Xilinx Virtex-2 Pro 4 0

QuickSilver ACM 32 32

Cradle CT3400 8 6

Table 3: Early multicore devices.

The motivations here were typically for power reduction 
and  performance  improvement  in  a  DSP  application 
area.  Perhaps the first popular multicore device was the 
Texas  Instruments  OMAP,  which  contained  a  single 
RISC CPU and a single DSP processor.   This  device 
was used in a very large number of mobile phones and 
made  such  an  approach  the  standard  in  low  power 
telecommunications equipment.

Also in this area, the QuickSilver Adaptive Computing 
Machine and the Cradle CT3400 were the next step in 
the  evolution  of  multicore  devices.   These  systems 
aggressively  put  on  the  order  of  a  dozen  high 
performance cores into a single device.

Lastly,  the  FPGA  vendor  Xilinx  produced  a  device 
called the Virtex-2 Pro which contained four PowerPC 
cores  embedded  in  their  FPGA  fabric.   This  unique 
architecture  was aimed at  the  networking  market  and 
was for equipment such as telecommunications switches, 
were low power was not a crucial issue.

While the T.I. OMAP device was extremely popular, the 
other  early  multicore  devices  did  not  fare  so  well. 
Because  the  T.I.  device  targeted  a  very  narrow 
application  area,  software  libraries  eased  software 
development issues common to such new and unusual 
architectures.   The  OMAP  was  also  the  simplest 
possible  multicore device,  with only two cores,  which 
also appears to have aided in its acceptance.

The other devices, while more sophisticated and higher 
performance,  typically  suffered  from  inadequate 
software development tools, or at least the perception of 
inadequate  software  development  tools.   Perhaps  the 
lesson of these early multicore devices was the difficulty 
of writing software for such architectures.

5.  Multicore in Networking
While  the  early  Virtex-2  Pro  multicore  device  from 
Xilinx found limited success in the networking area, the 
idea  of  focusing  on  a  single  narrow application  area 
became  the  approach  for  the  next  wave  of  multicore 
devices.  Perhaps most notable, the area of networking 
was one of the first to see a large number of multicore 
devices emerge.

Unlike the early DSP multicore devices, the networking 
applications  targeted  multicore  devices  typically  by 
using many copies of a single popular CPU architecture 
for  the  core.   It  is  worth  noting  that  the  multicore 
networking devices came from a wide variety of sources. 
This  includes  large  and  small  companies,  including 
start-ups  as  well  as  traditional  telecommunications 
equipment manufacturers.

Table 4 gives a list of some of the prominent multicore 
devices  used  in  networking.   This  continues  to  be  a 
popular approach to implementing networking hardware 
and this list continues to expand rapidly.

Device Core Type Cores
Cisco CRS-1 Tensilica 192

PA Semi PowerPC 2

Raza XLR700 MIPS64 8

Freescale MPC8572 PowerPC 2

Broadcomm BMC1250 MIPS64 4

Table 4: Networking multicore devices.

It  is  also  worth  noting  that  these  devices  tended  to 
compete directly with the earlier generation of multicore 
architectures, in particular, FPGA devices.  While these 
devices were still  somewhat more difficult to program 
than traditional single core devices, their uniform core 
structure  and  the  similarly  uniform  application  area 
made software tools less of a problem.  In fact, most of 
these devices offered no particular software support for 
multicore devices.  The compilers tended to be identical 
to the single core compilers and tools for earlier single 
core systems.

6.  Game Consoles
Game  consoles  occupy  a  somewhat  unique  niche  in 
consumer  electronics.   While  these  tend  to  be  full 
computing systems similar to a workstation or personal 



computer  in  hardware  structure,  they  are  used  for  a 
much narrower application area:  game playing.

Because the application area is so narrow, these systems 
have  tended  to  focus  on  performance,  in  particular 
graphics  performance.   And  because  these  systems 
resemble  consumer  appliances,  other  features  such  as 
low power and reliability are very important.  For these 
reasons,  major  game consoles  have shifted,  somewhat 
quietly, to multicore processors.

Perhaps the most prominent multicore game console is 
the  Sony  Playstation3.   It  is  powered  by  the  'cell' 
processor,  which  was  jointly  developed  by  Sony, 
Toshiba and IBM ('STI') in a multi year project that was 
estimated to have cost hundreds of millions of dollars.

The Cell processor contains a PowerPC core and eight 
floating point cores.   Each of these eight floating point 
cores  are  4-way SIMD,  giving  a  total  of  32  floating 
point processors operating in parallel.

All of this floating point performance was intended to 
accelerate  video  game  play,  in  particular  graphics. 
While the Cell processor is capable of  performing many 
graphics  chores  at  very  high  speed,  the  final  Sony 
Playstation3 design opted to add a traditional graphics 
controller,  allowing the Cell processor resources to be 
freed for other tasks.

As  with  other  multicore  systems,  the  Cell  was  more 
difficult  to  program  than  other  traditional  game 
consoles.  This led to an unexpectedly slow release of 
software titles,  at  least  initially.   But  like other  niche 
multicore solutions, the relatively low number of game 
programmers  and  the  relatively  narrow  area  of 
application  seems  to  have  helped  make  the  Cell  a 
powerful contender in game consoles.

There has been an attempt to use the Cell processor for 
other  applications,  but  these  have  been  slow  to 
materialize.  Some users of the Playstation3 have begun 
to  use  the  game  console  itself  as  a  general  purpose 
development workstation.  Linux has been available on 

the Playstation3 for several years and impressive results 
of the Folding At Home project indicate that very large 
amounts  of  computing  power  are  available  from 
processors such as the Cell.

Another major game console, the Microsoft Xbox 360, 
also  uses  multicore  technology,  but  somewhat  less 
aggressively.  The Xbox 360 uses three PowerPC cores 
with  some  vector  processing  enhancements.   This 
architecture  does  not  appear  to  have  had  the  same 
barriers to adoption as the Sony Playstation3, but this is 
perhaps due to the simple architecture of the Xbox 360.

7.  Desktop and Server Processors
Perhaps the most prominent and widely discussed move 
to  multicore  has  been  in  the  traditional  desktop  and 
server  devices.   All  of  the  major  manufacturers  of 
desktop  and  server  CPUs have  shifted  their  high  end 
designs to multicore.

These  devices  have  taken  a  relatively  conservative 
approach  and  have  gone  multicore  somewhat 
reluctantly.   Desktop and server processors are almost 
exclusively concerned with performance.  Historically, 
performance has been increased by the doubling of the 
number  of  transistors  in  a  design  every  18  months 
(popularly referred to as "Moore's Law") by producing 
smaller transistors, and the increasing of the clock speed 
of these smaller transistors.

Device Core Type Cores
AMD Phenom X4 x86 4

Intel Core 2 Duo x86 4

Sun UltraSPARC T2 SPARC 8

Table 5: Sever and desktop multicore devices.

Sometime  near  the  turn  of  the  new  millennium,  the 
power consumption of traditional single core processors 
began to limit the increases in performance.  A this time 
all   major  manufacturers  of  desktop  and  server 
processors  began  to  build  'dual  core'  processors 

Figure 2:  The evolution of multicore architectures.



containing two identical processor cores.   The process 
continues  with four  and  eight  cores  now standard  for 
high performance devices.

While  these  server  and  desktop  processors  contain 
multiple  cores,  much  of  the  software  which  runs  on 
these devices cannot take advantage of  these multiple 
cores.   While  operating  system  support  can  help 
distribute task level parallelism across cores, this type of 
parallelism is difficult to find on many desktop systems.

Server systems, on the other hand, are quite capable of 
making  use  of  multiple  cores  running  multiple  tasks. 
Their  relatively  low  power  considering  their  high 
performance have made these devices a favorite of data 
centers and installations which require large amounts of 
server hardware.

Unfortunately,  one  of  the  primary  bottlenecks  of 
traditional single core devices was the memory - CPU 
interface,  often  referred  to  as  the  'von  Neumann 
bottleneck'.   While the number of cores and the work 
they  perform  continues  to  increase  dramatically,  the 
bandwidth  from main  memory  to  the  multicore  CPU 
device has remained essentially unchanged.  In addition 
new  problems  such  as  'cache  pollution'  in  multicore 
devices that  share caches has become recognized as a 
problem with these new architectures. 

8.  Multicore SoC
Yet  another  place  where  multicore  has  taken  hold 
quietly is in System On Chip (SoC) devices.  These are 
custom silicon devices,  typically for some commercial 
embedded application.  A common example would be 
the processor in an MP3 player.

The  move  to  multicore  by  SoC  devices  has  been 
motivated by some slightly different factors than other 
multicore devices.  As with desktop and server devices, 
power is a prime concern for many SoC devices.  In a 
technique  similar  to  the  one  used  on  these  larger 
machines, SoC devices have used multicore as a way to 
reduce power consumption.

In a typical CPU, the clock speed is proportional to the 
voltage.   Increasingly higher  voltages  are  required  to 
increase  the  clock  speed,  and  hence,  the  processor 
performance.  But increasing the voltage also increases 
the power consumption, and in a non-linear fashion.  A 
doubling  in  clock  speed  results  in  significantly  more 
than doubling the power consumption in most CPUs.  So 
if the clock speed can be cut in half and two processors 
effectively  used  to  share  the  processing  duties,  a 
significant power savings can be realized.  Many SoC 
devices have begun to take this approach.

Additionally, many SoC devices use multicore as a way 
to simplify hardware design and reduce risk.  It may be 

possible  to  implement  some part  of  an  algorithm, for 
instance,  using a dedicated  processor  as opposed  to  a 
hard-wired Intellectual Property (IP) core.  This will not 
only  save  the  effort  of  designing,  implementing  and 
verifying  this  IP  core,  it  will  also  produce  a 
programmable solution in place of  a  fixed one.   This 
permits bugs to be fixed, even in fielded systems.  

Additionally,  this  styler  of  design  can  provide  some 
obsolesce-proofing,  since  new  features,  including 
performance and power consumption enhancements can 
be added on to the system via a software upgrade long 
after the systems has been deployed.  A fixed hardware 
solution  would  require  the  replacement  of  hardware, 
which may be difficult or impossible.

Again,  it  is  notable  that  this  benefit  of  emerging 
multicore  SoCs  covers  many of  the  same  themes  of 
earlier reconfigurable computing systems.

9.  Massively Multicore
While multicore SoC devices are aimed at a particular 
narrow  application  area  and  server  and  workstation 
devices  are  aimed  at  general  purpose  processing,  an 
emerging  multicore  device  architecture  attempts  to 
cover  the area  between these  two approaches.   These 
devices  typically  feature  dozens  or  even  hundreds  of 
cores  and  may  soon  contain  thousands.   While  no 
standard term exists for this group of devices they will 
be referred to here as massively multicore devices.

Device Core Type Cores
Azul Vega2 Java 48

Ambric Am2000 Custom 336

picoChip cp200 16-bit DSP 248

Tilera Tile64 MIPS 64

Boston Circuits gCore ARC 16

Intellasys SEAforth Custom 24

Plurality HAL-256 ? 256

Parallax Propeller Custom 8

ElementCXI ? ?

Coherent Logix ? ?

Table 6: Massively multicore devices.

Today there  are  many such  systems being developed, 
primarily by venture capital backed start-up companies. 
Table  6  gives  a  list  of  this  generation  of  massively 
multicore devices.   This list is not complete and it  is 
expected  that  many  similar  companies  will  produce 
similar devices in the near future.



Unlike  multicore  SoC  devices,  massively  multicore 
architectures do not target a specific application or even 
application area.  The goal of most of these devices is to 
provide high performance combined with low power for 
a  wide  range  of  applications.   While  some  of  these 
devices  may focus  on  a  specific  market  for  business 
reasons, their architectures are all general purpose and 
fully programmable.

While  general  purpose,  these  massively  multicore 
devices are not aimed at traditional desktop and server 
style general purpose computing.  They will typically be 
used  to  provide  high  levels  of  performance  in 
applications  that  could  otherwise  not  use  a 
programmable  solution.   This  ability  to  implement  a 
variety  of  programmable  applications  using  a  single 
device is very attractive in that it eliminates the need to 
design and implement a custom solution.  Implementing 
such a custom solution is not only very expensive, but 
can delay a product's time to market substantially.

Massively  multicore  architectures  hope  to  provide  a 
superior  solution  over  custom  Application  Specific 
Integrated Circuits (ASICs) and even FPGAs for many 
applications.  Clearly the performance of these devices 
can  be  as  much  as  one  to  four  orders  of  magnitude 
increase in raw performance over traditional single core 
programmable solutions.  The ability to purchase such 
devices commercially should provide a significant cost 
and time to market advantage for designers of embedded 
high performance systems.

10.  Graphics Processing Units
Graphics  Processing  Units  (GPUs)  were  originally 
designed  to  accelerate  graphics  applications  on 
workstations and personal  computers,  and increasingly 
on other devices such as mobile phones.   GPUs have 
been commercially available for several years, but have 
only recently begun to evolve into systems which clearly 
fit  the  definition  of  multicore.   While  many modern 
GPU devices  fit  the definition of  massively multicore 
devices, they are treated as a separate category because 
of  their  long  history  and  the  tendency  to  use  these 
devices in a very narrow application area.

While  there  have  been  a  large  number  of  makers  of 
graphics acceleration hardware in recent years, there are 
currently  two  major  manufacturers  of  these  devices: 
Nvidia and ATI.  Both have relatively similar products 
and both are making inroads into more general purpose 
processing.

Table 7 gives a brief overview of the current offerings 
from GPU vendors.   While  earlier  architectures  were 
very  focused  on  performing  standard  graphics 
operations,  newer  devices  have  provided  architectural 

enhancements  and  even  software  support  to  perform 
more general purpose computations. 

These systems tend to be some of the highest performing 
in the multicore landscape with all supporting floating 
point  arithmetic  operations.   These  devices  tend  to 
consume relatively large amounts of power, which also 
separates  them  from  many  of  the  current  massively 
multicore devices.

In addition to the GPU devices, similar architectures not 
specifically oriented toward graphics are also emerging. 
These devices are aimed at  the high performance and 
scientific  computing  areas  and  also  feature  a  large 
number of floating point cores on a single device.  Two 
examples of these devices are the ClearSpeed CSX600 
and the GRAPE-DR device.

Device Core Type Cores
Nvidia GeForce 32-bit FP 112

ATI Firestream 64-bit FP 320

ClearSpeed CSX600 64-bit FP 96

Grape-DR 64-bit FP 512

Table 7: GPU and GPU-like devices.

The ClearSpeed device is commercially available, while 
the GRAPE-DR is a component used in a supercomputer 
project sponsored by the Japanese government.  Because 
of  the  high  rates  of  computation,  it  is  expected  that 
similar devices will emerge to address the needs of the 
high performance computing market.

11.  Soft Multicore
The most recent and still emerging multicore category is 
soft  multicore.   This  approach  uses  an  FPGA device 
configured  as  a  multicore  processor.   While  certainly 
much  less  efficient  that  custom  ASIC  multicore 
implementations, this technique is attractive for a variety 
of reasons.

First,  existing  FPGA  technology  permits  literally 
hundreds of simple RISC CPU cores to be implemented 
in a single FPGA device.   This provides thousands of 
MIPS of raw performance in a single device.

In  addition,  the  configuration  of  the  FPGA  as  a 
multiprocessor provides a new level of abstraction.  It is 
no longer necessary to view the device as a collection of 
LUTs.  In fact, it may no longer be necessary to use the 
hardware  design  tools  supplied  by the  FPGA vendor. 
Once  the  multiprocessor  is  implemented,  standard 
software development tools such as high level language 
compilers may be used in much the same way as with 
any other multicore device.



Finally,  the  reprogrammability  of  the  FPGA  device 
opens  the  door  for  a  variety  of  enhancements 
unavailable  in  fixed  multicore  architectures.   Density 
may be improved and power consumption reduced, for 
instance, by replacing one or more soft CPU cores with 
a hard-wired functional core.  Similarly, the soft CPUs 
in  the  FPGA can  be  enhanced  by  adding  application 
specific  instructions,  for  instance,  to  increase 
performance.

It is interesting to note that such soft multicore devices 
bear  a  close  resemblance  to  earlier  reconfigurable 
computing applications.  A number of cores are used to 
implement some application in a parallel fashion.  The 
only difference with the soft multicore approach is that 
the cores themselves may be programmable CPUs.  This 
two-level  programmability  adds  a  new  dimension  of 
flexibility  and  potential  performance  to  FPGA-based 
systems.

Soft  multiprocessing  also  expands  the  sorts  of 
applications  that  may  be  suitable  for  FPGA 
implementation.  In  spite of may theoretical  claims of 
generality,  reconfigurable  computing  systems  have 
tended  to  be  used  in  fairly  narrow  application  areas 
involving highly regular and highly parallel algorithms. 
The use of soft CPUs relaxes this restriction somewhat 
and should permit the implementation of algorithms that 
may not have so regular a structure.

Soft  multiprocessing  is  only  now  emerging,  but  its 
advantages may make it a popular design methodology 
for high performance computing with FPGA devices.  It 
is  also  notable  that  while  emerging multicore  devices 
appear  to  be  quickly  encroaching  on  the  traditional 
FPGA  high  performance  application  space,  soft 
multiprocessing  may  be  able  to  reclaim  these 
applications to FPGA hardware platforms.

11.  Multicore Tools
While the focus of this paper  is to survey the current 
landscape  in multicore  architectures,  some mention of 
software tools is in order.  As has often been the case in 
high performance computing, hardware has led software. 
While a wide variety of multicore architectures has been 
launched in the market, the offerings for software tools 
have been lacking.

Most  of  the effort  seems to  be  in  the area  of  GPUs. 
Both  Nvidia  and  ATI  have  tool  sets  to  assist  in 
implementing high performance computing applications 
for  their  GPUs.   In  addition,  the  software  company 
RapidMind has  commercially  offered  similar  GPU 
oriented tools.  RapidMind also appears to be extending 
its offering to popular multicore devices, in particular in 
the server and desktop area.

Each of the many small  companies offering multicore 
devices  offer  some programming environment.   None 
have  caused  any  particular  excitement  in  the  wider 
programming  community.   After  several  years  of 
deployment  of  multicore  hardware  it  is  becoming 
accepted that there will be no 'magic bullet' in the form 
of  an  automatic  compiler  or  parallelizing  tool.   The 
emphasis at  this stage seems to be on minimizing the 
learning curve and beginning training of programmers in 
the use of multicore.  In general this means the explicit 
expression of parallelism in the software.

While many are pressing for new languages that aid in 
the  expression  of  parallelism,  there  is  also  much 
resistance  to  attempts  to  require  the  use  of  new 
languages.  It  is notable that the multiprocessor world 
has faced similar issues for decades and has not moved 
toward new languages.

But  some  lessons  have  been  learned  from  the 
multiprocessor  experience.   Libraries  to  produce  and 
control  parallel  threads  or  objects  and  to  explicitly 
manage  communication  across  processors  is  gaining 
some attention.  But it is not clear if the needs of system-
level multiprocessors overlap sufficiently with those of 
multicore.   In  particular,  the  core  interconnection 
bandwidth for single multicore device is so much higher 
than that of traditional multiprocessors and the memory 
and operating system environments so different, that it is 
uncertain if this approach will be productive.

Finally,  even the  notion of  coarse  grained  parallelism 
has come into question.  While the most popular model 
for parallelism today is the 'threads' model, it is not clear 
that  it  will  translate  well  into  large  numbers  of  cores 
with very high bandwidth communication channels.  In 
particular, the reliability of such an approach has been 
called into question [16].

12.  Conclusions
Multicore devices are emerging from a variety of areas 
and are targeting a wide variety of applications.  There 
are  some  notable  trends,  in  particular  the  increasing 
numbers of cores.  Somewhat troubling, however, it the 
lack of investment in multicore software as compared to 
the apparent investment in multicore hardware [18][23].

Unlike  other  technologies,  multicore  performance  is 
highly sensitive  to  software  implementation.   Writing 
software one particular way as opposed to another can 
have a dramatic impact on performance.  While many 
wait  for  tools  to  fill  this  gap,  others  are  opting  for 
programmer education.   Some combination of  both is 
likely to be the solution that drives multicore forward. 
The progress is expected to be evolutionary, rather than 
revolutionary.



Other  aspects  of  multicore  are  just  beginning  to  be 
explored.  Defect and fault tolerance in particular may 
be game-changers.  The ability to dramatically improve 
silicon yields  for  large  and complex devices  is  surely 
attractive to all makers of multicore hardware.  This is 
expected to be an active area of research in the very near 
future.

11.  References
[1]  IEEE Symposium on Field Programmable Custom 

Computing Machines (FCCM), 
http://www.fccm.org/, 2008.

[2]  International Conference on Field Programmable 
Logic and Application (FPL), http://www.fpl.org/, 
2008.

[3]  International Conference on Field Programmable 
Technology (FPT), http://www.icfpt.org/, 2008.

[4]  “Xilinx enhances FPGAs with embedded 
PowerPCs”, http://www.eet.com/semi/news/ 
OEG20020304S0017, March 4, 2002.

[5]  “The Future of Microprocessors”, David Patterson, 
U. California at Berkeley, June 2001. 
http://www.cs.berkeley.edu/~pattrsn/talks/NAE.ppt

[6]  Chip Multiprocessing Resources: 
http://www.princeton.edu/~jdonald/research/cmp/

[7]  The Cmpware Multiprocessor Report, 
http://www.MultiprocessorReport.com/, 2008.

[8]  Programmability Issues for Multicore Computers 
(MULTIPROG), http://www.valimar.it/multiprog/.

[9]  Forum on Application Specific Multiprocessor SoC 
(MPSOC), http://www.mpsoc-forum.org/index.html

[10]  Harry Goldstein, "Cure for the Multicore Blues", 
IEEE Spectrum, Volume 44, Number 1, January 
2007, pages 40-43.

[11]  Richard McDougall, "Extreme Software Scaling", 
ACM Queue, Volume 3, Number 7, September 
2005, pages 36-46.

[12]  Herb Sutter and James Larus, "Software and the 
Concurrency Revolution", ACM Queue, Volume 3, 
Number 7, September 2005, pages 54-63.

[13]  Kunle Olukotoun and Lance Hammond, "The 
Future of Microprocessors", ACM Queue, Volume 
3, Number 7, September 2005, pages 26-34.

[14]  Luiz Andre Barroso, "The Price of Performance", 
ACM Queue, Volume 3, Number 7, September 
2005, pages 48-53.

[15]  Mache Creeger, "Multicore CPUs for the Masses", 
ACM Queue volume 3, number 7, September 2005, 
pages 63-64.

[16]  Edward A. Lee, The Problem with Threads, IEEE 
Computer, volume 39, Number 5, May 2006, pages 
33-42.

[17]  Seth Copen Goldstein, Herman Schmidt, Mihai 
Budiu, Srihari Cadambi, Matt Moe and R. Reed 
Taylor, "Piperench:  A Reconfigurable Architecture 
and Compiler", IEEE Computer, Volume 33, 
Number 4, April 2000, pages 70-77.

[18]  Agam Shah, "Intel Exec:  Programming for 
Multicore Chips a Challenge", Washington Post, 
April 2, 2008, http://www.washingtonpost.com/wp-
dyn/content/article/2008/04/02/AR2008040201520.h
tml

[19]  Krste Asanovic, Ras Bodik, Bryan Christopher 
Catanzaro, Joseph James Gebis, Parry Husbands, 
Kurt Keutzer, David A. Patterson, William Lester 
Plishker, John Shalf, Samuel Webb Williams, 
Katherine A. Yelick, "The Landscape of Parallel 
Computing Research: A View from Berkeley" 
Technical Report No. UCB/EECS-2006-183, 
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html, December 18, 2006.

[20]  Krste Asanovic, Ras Bodik, Jim Demmel, John 
Kubiatowicz, Kurt Keutzer, Edward Lee, George 
Necula, Dave Patterson, Koushik Sen, John Shalf, 
John Wawrzynek, and Kathy Yelick, "The 
Landscape of Parallel Computing Research:  The 
View from Berkeley 2.0", Manycore Computing 
Workshop, June 2007, 
http://science.officeisp.net/ManycoreComputingWor
kshop07/Presentations/David%20Patterson.pdf

[21]  Jeffrey Dean and Sanjay Ghemawat, "MapReduce: 
Simplified Data Processing on Large Clusters", 
Google Labs, OSDI'04: Sixth Symposium on 
Operating System Design and Implementation, San 
Francisco, CA, December, 2004, 
http://labs.google.com/papers/mapreduce.html

[22]  Brian Hayes, "Computing in a Parallel Universe", 
American Scientist, volume 95, 2007, pages 
476-480, 
http://www.americanscientist.org/content/AMSCI/A
MSCI/ArticleAltFormat/2007102151724_866.pdf

[23]  Richard Goering, "Dearth of Tools Could Stall 
Multicore Onslaught", EE Times, April 2., 2007, 
http://www.eetimes.com/showArticle.jhtml?
articleID=198701494

http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.princeton.edu/~jdonald/research/cmp/
http://www.cs.berkeley.edu/~pattrsn/talks/NAE.ppt

