
Programming Configurable Multiprocessors

Steven A. Guccione
Cmpware, Inc.

Austin, TX (USA)
Steven.Guccione@cmpware.com

Abstract

A new high performance computation technique
involving multiple processors on a single silicon die is
quickly gaining popularity. This new design approach
provides very high performance, excellent power
efficiency and a high level of programmability as
compared to other existing solutions. This approach
also serves to move the design effort away from
hardware design and toward software. This results in
a faster time to market as well as a lower up-front
design cost. This paper discusses the Configurable
Multiprocessor design environment from Cmpware,
Inc.. This toolkit is used to design ASIC, FPGA and
SoC multiprocessor solutions.

1. Introduction

As the number of available transistors on a die has
continued to increase toward the one billion mark,
traditional processor architectures have arrived at a
critical juncture. Microprocessors and FPGAs have
become power-limited and are having difficulties
increasing both their device sizes and their clock speeds.
The circuits currently used to implement these devices
consume nearly as much power as can be conveniently
dissipated. Microprocessors have quickly turned toward
multicore designs – devices containing two or more
microprocessor cores. This change has been so
dramatic that it appears that from this point forward, no
new high performance microprocessors will be
announced or built using a single processor core [10]
[11][12].

A similar trend has occurred in the FPGA world. Large
modern FPGA devices such as the Xilinx Virtex II Pro
already contain several standard microprocessor cores
[1]. There are also reports from ASIC processor core
vendors that their customers are on average using
several cores per device. It is expected that as
performance and power constraints continue to dominate
design, this trend will continue and accelerate.

This paper discusses a new software development tool
from Cmpware, Inc. aimed at programming such
multiprocessor architectures. This toolkit provides a
fast simulation and development environment for a
network-connected arrays of processors. This
environment gathers and presents a rich variety of
system run time performance and execution data which
is essential to successful development in a
multiprocessor environment.

2. Configurable Multiprocessing

There are three major multiprocessing approaches used
today. The first is the multicore approach used by
traditional microprocessor vendors such as Intel, IBM
and Sun. Here, multiple processor cores share memory
and often cache. Several research efforts in the late
1990 pioneered this “Chip Multiprocessing” approach
[2][3][6] This tightly coupled arrangement does not
address the memory bandwidth issues in increasing
processor performance, but it does provide a task level
of parallelism which saves a potentially expensive
context switch. This is useful in the presence of high
rate interrupts, such as a busy network interface. But it
is not clear that there are many such tasks available in
conventional systems to exploit this type of parallelism.

Figure 1: The Cmpware Framework.

The second approach is used by FPGA manufacturers
such as Xilinx. Here multiple processor cores are
distributed around the FPGA die to be used as the

designer sees fit. Additionally, FPGA designers are
increasingly turning to “soft” processor cores such as the
Altera NIOS or Xilinx MicroBlaze [14]. Many are
increasingly turning to multiple soft processor cores to
implement systems. Software support for these
hardwired processors, as well as multiprocessing in
general, has been largely unavailable.

The last approach is the large-scale use of processor
cores in a custom ASIC device [7][8][9][13]. Vendors
of processor cores are reporting high levels of
multiprocessor development from their customers.
Again, these systems have tended to be ad-hoc, and little
support is provided to develop such architectures.

Figure 2: The Cmpware development environment.

In general, none of these approaches have provided
much support for the multiprocessor design process.
Also, because they tend to be ad-hoc implementations,
no particular programming environment addressing the
needs of multicore devices has been made available
from these vendors. This is in spite of the obvious
dedication of both vendors and customers to this
approach.

Configurable Multiprocessing (CMP) attempts to put a
flexible and useful framework in place that will in turn
permit useful tools and supporting intellectual property
to be put in place to support these designs. This
framework consists of collections of standard processor
cores communicating across well-defined
communication links.

The Cmpware approach is to treat the processor /
compiler as a “black box” capable of implementing
algorithms from a high level language. This approach
makes the maximum use of existing intellectual
property. Existing processor cores and tools are used as
well as existing libraries and other software for these
processors. This is in contrast to other recent
approaches which either define new programming

languages or programming language extensions, and / or
new processor architectures. Designing and
implementing new processors and tools can be an
expensive and time-consuming endeavor. The approach
taken by Cmpware provides a path to efficiently use
existing tools and architectures while also providing the
flexibility for integrating new intellectual property
where necessary. All of this places the emphasis on
designing a solution to the problem at hand, not to
designing a support infrastructure to be used to solve the
problem at hand.
In the Cmpware approach, the preferred method of
communication is a direct, point to point link accessed
as a memory mapped IO port. The reasons for this are
twofold. Point to point links provide the maximum
bandwidth and faster synchronization compared to other
approaches. Traditional shared buses and system-level
networking such as TCP/IP tend to be large and slow
and essentially re-create existing system bottlenecks.

Figure 3: The multiprocessor FIR code.

Using a memory-mapped IO port as the interface to the
communication channel has two very significant
benefits. First, it keeps the processor core intact. There
is no need to modify either the processor hardware
design or its simulation model to use this type of
communication link. Second, and perhaps more
importantly, it does not require any modifications to the
compiler. The memory mapped IO ports appear as an
address or “pointer” to be written to or read from. This
also provides a very simple and natural interface to the
programmer.

Figure 1 gives the general structure of the underlying
Cmpware model. Standard components are used for the
Processor and the Multiprocessor interfaces. These
provide not only generally useful default behavior, but

void _start(void) {
 int node;
 int ntaps;
 /* Get the parameters */
 node = *west;
 ntaps = *west;
 /* Send to the nextnode */
 *east = (node-1);
 *east = ntaps;

 for (;;) {
 *east = FIR(ntaps, *west);
 *east = shift(ntaps, *west);
 } /* end for() */
 } /* end _start() */

also all of the machinery necessary to perform
multiprocessor simulation. Note that the Processors are
uniform objects with their own customization as well as
memory and memory mapped IO. These are interfaces
to the user-defined interconnection network, which
supplies the multiprocessor interface. It is this interface
which communicates the the Eclipse Integrated
Development Environment (IDE) as well as a simple
command line interface.

While these are the suggested approaches for building
configurable multiprocessors, the Cmpware toolkit is
very flexible in its system modeling offerings. Users
may specify custom processor architectures, modify
existing architectures and supply custom interconnection
models where required.

3. An FIR Filter Example

The Finite Impulse Response (FIR) filter is a very
common processing element which is often
implemented in both hardware and software. It will
make a good candidate for demonstrating some of the
features of the configurable multiprocessing approach.

Figure 4: The FIR code.

In this example, the processing node selected is a NIOS
II processor from Altera. The communication network
is a 2D grid, with each processor communicating with
its four neighbors, although all of these links may not
be used in this particular example. The links used by
the processors are Shared Registers, which behave like
one word synchronous FIFOs. These permit data to be
communicated between nodes in a single cycle, while
providing the tight synchronization required for high
levels of processor utilization.

Figure 2 shows the Cmpware development environment.
A 1 x 6 array of NIOS II processors has been allocated
and the FIR code loaded into the nodes. Note that this
development environment is based on the popular
Eclipse IDE [14] and in this case plugs directly into the
Altera NIOS II software development environment. In
this display, the graphical view of the processor array as
well as the IO port status is shown. The other displays

include a node source code trace of execution, a memory
viewer, a disassembler as well as detailed internal node
information such as register values and performance and
profiling statistics. These displays are too numerous to
detail in this paper, but all are simple to access and
interpret and are valuable in debugging and tuning
multiprocessor systems.

Figure 3 shows the multiprocessor version of the FIR
code. This particular piece of code is parameterized and
is run on one or more nodes used to implement the FIR
filter. In this case, the number of nodes and the number
of taps for the filter is passed in as parameters to
configure the filter. In the example displayed in Figure
2, there are six nodes. The first node is a simple data
source which sends the input data to the FIR filter.
Similarly, the last node is the data sink, which just stores
the results for later inspection. So in this particular run,
the FIR uses four nodes, each with two taps, for a total
of eight taps. The east and west pointer variables in the
code represent the IO ports.

Figure 4 shows the code which actually implements the
FIR filter. What is perhaps most interesting about this
code is that it is a standard “C” function which was
taken directly from the literature. There is no particular
reference to the parallelism being exploited. All of this
is handled at the parameterization level as shown in
Figure 3. Another feature of this approach is that the
number of taps and the number of processors used is set
by two parameters, which can be set dynamically at run
time. This permits such processing to dynamically
allocate resources at a very fine grain to manage such
system parameters such as power consumption and
performance.

Figure 5: The FIR result.

The graph in Figure 5 shows the input data and the
output data, just to verify that a FIR filtering operation
was indeed performed. Perhaps more interesting, the
graph in Figure 6 shows the speedup as nodes are added.
Because the communications and synchronization
between nodes is so fast, the speedups as the algorithm
is parallelized are fairly dramatic. Note that with no

int FIR(int ntaps, int sum) {
 int i;

 for (i=0; i<ntaps; i++)
 sum += h[i] * z[i];

 return (sum);
 } /* end FIR() */

0
2.5

5
7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

32.5
35

37.5
40

42.5
45

change in the code, the final 8 processor bar shows a
very high degree of parallelization of the algorithm. In
this case there is just one filter stage per processor, and
there is still an nearly linearly increase in performance.

Unlike other system-level parallel processors, the
ability to communicate on-chip permits these
efficiencies. Because there is little overhead in
communicating, parallelizing of the algorithm can
continue at higher levels of efficiency than is possible
with other parallel machines. In fact, the fast
communication and synchronization make the
computation, when it is fully parallelized, resemble
hardware-style register transfer language (RTL) design.
Unlike hardware design, however, the resources may be
redeployed at run time and used in more flexible ways.

Figure 6: The FIR speedup.

4. Conclusion

Today, it is possible to build and program devices
containing thousands of processors. Even
reconfigurable logic devices such as FPGAs can easily
support hundreds of soft processor cores in a single
device. This provides the potential for thousands of
MIPS of computing power, programmed in traditional
high level languages. To make this approach even more
attractive, it operates at a power efficiency that is orders
of magnitude higher than the approach used by existing
desktop uniprocessors.

Cmpware, Inc. has defined a simple framework for
describing a multiprocessor architecture and has
provided a fast and flexible programming and
simulation environment for such an architecture. This
environment supports pluggable processor nodes and a
configurable interconnection network. It also provides
fast and accurate multiprocessor simulation with a wide
variety of run-time data displays. The configurable
multiprocessing approach promises to provide fast and
flexible high-performance, low-power architectures

while continuing to take advantage of increasing circuit
densities.

5. References

[1] “Xilinx enhances FPGAs with embedded
PowerPCs”,
http://www.eet.com/semi/news/OEG20020304S0017
, March 4, 2002.

[2] Lance Hammond, Basem A. Nayfeh and Kunle
Olkotun, A Single-Chip Multiprocessor, Computer,
Volume 30, Number 9, September 1997, Pages 79-
85.

[3] Lance Hammond, Ben Hubbert , Michael Siu,
Manohar Prabhu, Mike Chen , and Kunle Olukotun.
The Stanford Hydra CMP, IEEE MICRO Magazine,
March-April 2000.

[4] “The Future of Microprocessors”, David Patterson,
U. California at Berkeley, June 2001.
http://www.cs.berkeley.edu/~pattrsn/talks/NAE.ppt

[5] Chip Multiprocessing Resources:
http://www.princeton.edu/~jdonald/research/cmp/

[6] Stanford Hydra Project: http://www-
hydra.stanford.edu/

[7] John Goodacre, Understanding the Options for
Embedded Multiprocessing, ARM IQ Journal, Vol.2,
No.2.

[8] “Tensilica clears path to multiprocessor SoCs”,
http://www.eetimes.com/story/OEG20020826S0024,
August 26, 2002.

[9] “Tensilica Introduces Industry's First Integrated
Development Environment for Multiple Processor
SOC Hardware and Software Design”,
http://www.tensilica.com/html/pr_2003_06_16a.html
, June 16, 2003.

[10] “Intel Demonstrates Breakthrough Processor
Design”,
http://www.intel.com/pressroom/archive/releases/20
010828comp.htm, August 28, 2001.

[11] “AMD Announces Technology Milestone With Its
Multiple-Core Strategy”, http://www.amd.com/us-
en/Corporate/VirtualPressRoom/
0,,51_104_543~86455,00.html, June 14, 2004.

[12] ”Sun Drives Multithreaded Processor Innovation
with New UltraSPARC IV+”,
http://www.sun.com/smi/Press/sunflash/2004-
10/sunflash.20041005.2.html, October 5, 2004.

[13] “ARC International’s Customers Lead Way in
Multiprocessing Design”, http://www.us.design-
reuse.com/news/news5747.html, June 18, 2003.

[14] “Eclipse Platform Technical Overview”,
http://www.eclipse.org/whitepapers/eclipse-
overview.pdf, February, 2003.

[15] “Literature: NIOS II Processor”,
http://www.altera.com/literature/lit-nio2.jsp, 2004.

2 4 8

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000

Processors

C
yc

le
s

