
Building a HardNode Model Page 1

Building a HardNode Model

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is based
around fast simulation models for processors. These models may be standard
architectures from traditional microprocessor vendors, or they may be custom
processors developed for a specific application. Or, in many cases these processors
may be hard-wired logic used to efficiently implement some function. Like other
extensible models in the Cmpware system, implementing HardNodes and interfacing
them to other processors is a relatively simple task. This treatment of custom logic
blocks as processors has a variety of advantages, including rapid simulation. This
document is provided to describe the process of building HardNode models.

HardNodes

The power and flexibility of the Cmpware system comes from its ability to abstract large,
complex hardware components and simulate them efficiently. Typically these
components are traditional instruction set processors. In modern System On Chip
(SoC) design, there is typically some combination of processors and fixed hardware
components. There are many reasons for using fixed hardware instead of
programmable instruction set processors. Among the most common reasons are:

• Performance: Sometimes it is not possible to perform all of the processing
necessary for an application, even with a relatively large number of processors. In
many cases, this processing occurs on high data rate inputs or outputs. Here raw
input / output speed demmands that custom logic be used.

• Power: While it may be possible to perform all of the necessary processing using
programmable processors, there may be cases where a small amount of custom
logic can dramatically reduce the power consumption as compared to a
multiprocessor approach. This power savings is often a result of allowing a lower
system clock speed.

• Available Intellectual Property: In other cases, there may be some existing,

Version 1.0.0 (January 21, 2005)
Copyright © 2004, 2005 Cmpware, Inc. All rights reserved.

Building a HardNode Model Page 2

verified custom logic core already in existence from a previous effort. Rather than
porting this functionality to one or more programmable processors, it may be simpler
to use this existing circuitry.

There may be other reasons for using custom logic in an SoC design, but these are
some of the more compelling ones. In order to support the addition of such custom
logic in the Cmpware environment, an extensible modeling class called HardNode is
defined.

The HardNode Class

The basis of all processor models in the Cmpware system is a Java class called
Processor. This class contains much of the machinery necessary for modeling a
standard instruction set processor. This involves such generic functionality as
managing instruction fetch, branching with delay slots, and returning various pieces of
information used by the command line and Eclipse interfaces.

However, much of this does not directly relate to supporting simultaion models for hard
wired logic. Fortunately, the Processor interface is generic enough to support any
sort of processing engine, even a hard wired custom logic block. All that is required is
to ignore much of the functionality of the Processor class and perhaps be aware of
some interfacing issues which are usually hidden by the Processor class.

This is exactly what the HardNode class does. The HardNode class extends the
Processor class, filling in some default values for the abstract methods which are not
useful when defining a hard wired logic block. In fact, all that remains to be
implemented from the original Processor class is the execute() method as shown
in Figure 1.

To define the behavior of the custom logic block, all that is required is that the
execute() method be supplied to provide the appropriate behavior. While this
method takes a single input parameter, it is typically ignored. Similarly, there is a
memory and register exception which may be thrown by the method. While these are

Version 1.0.0 (January 21, 2005)
Copyright © 2004, 2005 Cmpware, Inc. All rights reserved.

 Figure 1: The HardNode class abstract method.

public abstract void execute(int instr)
 throws MemoryAccessException,
 IllegalRegisterException;

Building a HardNode Model Page 3

also typically ignored, there may be cases where memory or registers are used by the
custom logic and it may be useful to throw such exceptions.

A HardNode Implementation

Figure 2 gives a simple HardNode implementation. While the calculation being
performed by the HardNode is usually fairly straight forward to implement, some case
should be taken when performing the processor communication. At the core of the
issue is that the HardNode will be performing its operations in parallel. This must be
taken into account in the simulation model, primarily in the way in which it
communicates with other processor nodes.

The code in Figure 2 performs a very simple function. It reads a value from the “east”
Memory Mapped IO port, increments it, and sends it to the “west” Memory Mapped IO
port. The data is also written to general purpose register r[0]. The only reason for

Version 1.0.0 (January 21, 2005)
Copyright © 2004, 2005 Cmpware, Inc. All rights reserved.

Figure 2: Loading the hand-compiled Simple code at reset.

public void execute(int instr)
 throws MemoryAccessException,
 IllegalRegisterException {

 /* Try to read a value from the east MMIO port */
 try {
 i = read32(east);
 } catch (MemoryMappedIOException sre) {
 ; // Do nothing
 }

 i = i + 1;
 r[0] = i;

 /* Try to write a value out to the west MMIO port */
 try {
 write32(west, i);
 } catch (MemoryMappedIOException sre) {
 ; // Do nothing
 }

 } /* end execute() */

Building a HardNode Model Page 4

this is so that it is visible in the Eclipse display. One of the defaults in the HardNode
class is that a single register, r[0], is available. Note that it is possible to define more
registers, but we will make use of this default. Perhaps the only parts of the simulation
model which may require some explanation are the catching of the two Memory
Mapped IO exceptions.

Part of the default Link model used by Cmpware is a handshaking protocol. This is a
semaphore bit used to tell the processor if the particular port is ready to send or receive
data. In the case of this simple node, as long as it is communicating with other
HardNodeDemo processors, the communication links will always be available to send
and receive data.

In other cases, the HardNodeDemo may be connected to other processing nodes which
may at some points not be able to receive data on every cycle. In these cases, the
HardWiredNode will attempt to write data to a port which is currently unavailable, and
will generate a MemoryMappedIOException. In the standard Processor model, this
is used to internally generate a processor stall, which retries the communication until it
succeeds.

In this HardNode model, the hardware just keeps on writing, whether the port is ready
to accept the data or not. This is, in fact, the way hardware often works. It produces a
result each cycle, and the receiver had better be able to accept it. But this model could
just as easily be modified to handle cases where the ports may be busy. This would
just involve additional code in the exception handlers. Of course, the ultimate decision
on how the communication is to be modeled depends on the hardware itself. If it uses
this type of flow control, then it should be included in the model. Otherwise, it is safe to
ignore these exceptions.

Testing the New HardNode Model

At this point we have a compiled Java class file that will serve as the HardNode model.
But this class file currently exists as a single Java file in its own project. This must now
be made visible to the rest of the Cmpware code. Fortunately, this is a very simple
process. All that is required is that the directory containing the class is specified in the
Java CLASSPATH environment variable. Setting this variable is system dependent,
but should be well documented in your system and in the Java documentation.

Perhaps the best way to test the new HardNode model is using the Cmpware command
line debug monitor. This tool is embedded in the ide.jar file in the Eclipse
Cmpware plugin directory. Use this JAR file as below to bring up the command line
debug monitor.

Version 1.0.0 (January 21, 2005)
Copyright © 2004, 2005 Cmpware, Inc. All rights reserved.

Building a HardNode Model Page 5

$ java -classpath ide.jar com.cmpware.cmp.MpMon
This will bring up a prompt that will permit you to interact with the new model. The first
step is to allocate a 3 x 3 array of HardNodeDemo processors. Then attempt to step
the processors. Figure 4 below shows a 3 x 3 array of processors stepped for five
cycles. A look at the registers shows the expected values, five. Additionally, the ports
show the commiunication network operating as expected. One input and one output
port are used for a total of five cycles each. This particular test verifies that the new
model is visible and working. Moving to the Eclipse IDE will verify that the model is fully
functional in this environment.

Using the Model in the Eclipse IDE

In general, if the command line interface operates properly, the IDE should also. Once
the Cmpware Eclipse IDE is brought up, the HardNodeDemo processor must be
selected from the Windows --> Preferences --> Cmpware preference page. This is

Version 1.0.0 (January 21, 2005)
Copyright © 2004, 2005 Cmpware, Inc. All rights reserved.

Figure 3: Simulating the HardWiredDemo.

$ java -classpath ide.jar com.cmpware.cmp.MpMon
(null)> a 3 3 HardNodeDemo
[0,0]HardNodeDemo> s 5
[0,0]HardNodeDemo> r
none:00000005

none:00000000

[0,0]HardNodeDemo> ports
Input ports:
80000004 *00000005 (2/3)
80000008 00000000 (0/0)
8000000c 00000000 (0/0)
80000000 00000000 (0/0)
Output ports:
80000004 *00000000 (0/0)
80000008 *00000000 (0/0)
8000000c 00000005 (3/2)
80000000 *00000000 (0/0)
[0,0]HardNodeDemo> q
[0,0]HardNodeDemo> q
$

Building a HardNode Model Page 6

done by changing the Processor field to HardNodeDemo. In addition, the Model Path
field must be set to indicate the directory containing the model. This directory should
be the one containing the com/cmpware/cmp/models/ directory tree, which contains the
HardNodeDemo.class file. Note that the standard CLASSPATH search for class files
may or may not work depending on your system. It is best to use the Model Path
preference to indicate the location of these models. Once the Ok button is pressed, a
new processor array of HardNodeDemo processors is allocated and initialized.

Figure 5 shows the Cmpware IDE using this new HardNodeDemo model. This array
of hard wired processors just takes values in form the communication link to the left,
increments the value read, then writes the value out the port to the right. The pattern of
each node communicating on a different cycle can be seen in the main array display. In

Version 1.0.0 (January 21, 2005)
Copyright © 2004, 2005 Cmpware, Inc. All rights reserved.

Figure 4: Setting up the HardNodeDemo.

Building a HardNode Model Page 7

addition, the table of Link activity verifies this expected behavior.

Comments on Using HardWired Nodes

As mentioned earlier, there are many reasons for using hard wired logic in a design.
Performance, power and practical considerations all are factors. But one interesting
feature of the ease at which the Cmpware tools define and integrate such models is
that it permits designs to evolve in new directions.

The first approach is the gradual addition of hard wired nodes from an existing array of
traditional processors. If done correctly, instruction set processors can be incrementally
replaced with hard wired logic with minimal disturbance to the existing system. This can
permit a system, for instance, to be rapidly designed and implemented with

Version 1.0.0 (January 21, 2005)
Copyright © 2004, 2005 Cmpware, Inc. All rights reserved.

Figure 5: An array of HardWiredDemo processors.

Building a HardNode Model Page 8

programmable processors for a faster time to market. Then the design can be
improved in power, performance and / or other system parameters. This permts
designs to evolve incrementally without a complete overhaul of the hardware and
software in the system.

A design may also evolve in the opposite direction. An array of various hard wired
nodes may be incermentally replaced with instruction set processors as part of the
design process. This replaces a fixed platofrm with a programmable one. This may be
desirable for a number of reasons. In general, a programmable system may have
several advantages over a hard wired design. Among these advantages are:

• Field Repair: Bugs and other degisn errors can be fixed in fielded systems if the
error is in software. In hardware, such bugs may either permanently cripple
functionality of the system or even make such systems require repalcement.

• Upgradeability: Fielded systems can have their functionality modified with a software
change. This permits new features to be added. This may extend the lifetime of a
product by adding new functionality with software without having to obsolete the
hardware.

• Reuse: Fixed logic requires hardware resource to be dedicated for each system
function, no matter how frequently or infrequently it is used. A programmable
solution can reprogram its processing nodes to perform one function at one instant,
and onother later. This can actually dramatically reduce the amount of hardware
required in a system, potentially reducing cost and power consumption.

Conclusions

The document has described the modeling of a simple hard wired node in the
Cmpware system. These nodes permit custom logic and other non-traidtional
processing elements to be easily integrated into the Cmpware environment. By
maintaining compatability with the existing Processor interface, the Cmpware toolkit is
able to easily manipulate and simulate the model as if it were a standard processor. In
fact, in the Cmpware environment, a HardNode is just another processor, and one that
is often much simpler than traditional instruction set processing nodes.

Version 1.0.0 (January 21, 2005)
Copyright © 2004, 2005 Cmpware, Inc. All rights reserved.

Building a HardNode Model Page 9

Appendix A: HardNodeDemo.java

package com.cmpware.cmp.models;
import com.cmpware.cmp.HardNode;
import com.cmpware.cmp.MemoryAccessException;
import com.cmpware.cmp.IllegalRegisterException;
import com.cmpware.cmp.MemoryMappedIOException;

/**
** This gives an example of a HardNode. It simply
** takes data from the "east" input, increments it,
** then sends it to the "west" output.
**
** <p>
** Copyright (c) 2004 Cmpware, Inc. All Rights Reserved.
** <p>
**
** @author SAG
*/

public class HardNodeDemo extends HardNode {
/** Copyright string */
public final static String copyright =
 "Copyright (c) 2004 Cmpware, Inc. All Rights Reserved.";

/*
** (non-Javadoc)
** @see com.cmpware.cmp.Processor#execute(int)
*/

public void execute(int instr)
 throws MemoryAccessException, IllegalRegisterException {
 /* Try to read a value from the east MMIO port */
 try {
 i = read32(east);

Version 1.0.0 (January 21, 2005)
Copyright © 2004, 2005 Cmpware, Inc. All rights reserved.

Building a HardNode Model Page 10

 } catch (MemoryMappedIOException sre) {
 ; // Do nothing
 }

 /* Try to write a value out to the west MMIO port */
 try {
 write32(west, i);
 /* Save it to the r[0] register */
 /* (just so we can see it in the IDE) */
 r[0] = i++;
 } catch (MemoryMappedIOException sre) {
 ; // Do nothing
 }

 } /* end execute() */

/** The East MMIO port */
public final static int east = 0x80000004;
/** THe West MMIO port */
public final static int west = 0x8000000c;
/** The value being passed along */
private int i = 0;
} /* end class HardNodeDemo() */

Version 1.0.0 (January 21, 2005)
Copyright © 2004, 2005 Cmpware, Inc. All rights reserved.

