
Building a Link Model Page 1

Building a Cmpware Link Model

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is based
around fast simulation models for multiple processors. While the processing nodes
themselves may be standard or custom processors, or even hard-wired logic, perhaps
the defining element of such a system is its interconnection network. The ability to
define and program a multiprocessor is highly dependent on the ability to define the
network for the architecture. The Cmpware CMP-DK defines an extensible model for
the network itself, which defines the topology of the interconnection. Beneath this is the
physical implementation of this topology, or the Links. These links are the individual
communication components used to build the network.

The Cmpware CMP-DK supplies a set of basic Link models. These currently include a
Shared Register and a FIFO. These links are point to point and are used by the
Network model to construct the processor to processor interconnection network.

This document describes the Link model and its implementation. Like the other
models in the Cmpware system, the Link model provides the default capability. It may
be extended and enhanced to suit the requirements of the particular design.

The Cmpware Multiprocessor Structure

A multiprocessor system at its most basic is a collection of processing elements
connected by some communication network. This definition, while functional, provides
for a very wide variety of possible multiprocessor architectures. Because this definition
is so flexible, it has been difficult to find design and development tools that adequately
support more than a small subset of the multiprocessor architectures made possible by
this definition. The Cmpware CMP-DK seeks to refine this definition to provide a more
limited, but still highly functional definition of multiprocessing.

By limiting the scope of the definition of multiprocessing, Cmpware seeks to provide a
development environment which supports a variety of useful multiprocessing platforms,
while lowering the effort to produce both the software development environment and

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 2

the actual hardware and software implementation of such architectures. The Cmpware
CMP-DK seeks to take a relatively small number of components and support the fast
and flexible arrangement of these components to produce a complete multiprocessor
model. This model will then be used by the development environment, which provides
a sophisticated interface for software design and system evaluation. The development
environment supports three basic types of customizable models for constructing
multiprocessors. These are:

• Processor: the processor is the element which does much of the work in the
multiprocessor. This element is typically a standard instruction set architecture with
a standard High Level Language (HLL) compiler used for programming. Nodes may
take other forms, including hard wired logic, but for the purposes of this discussion
they are considered simply the the processing elements that are connected together
to produce the multiprocessor.

• Network: The network is the hardware used by the processors to communicate with
each other. The network is primarily defined by its topology. This may take a
variety of regular forms, such as a mesh, which connects each processor to its
nearest neighbors. The network may implement any regular or irregular connection
of processing nodes.

• Links: The links are the components used to implement the Network. If the Network
is a collection of communication channels, the Links are the implementation of these
channels. These may be components such as a shared register or a FIFO and may
implement a variety of interfaces used by the processors.

This document is primarly concerned with the implementation of the Link model.
Reference will be made to both the Processor and Network models, but these are
discussed in more detail elsewhere.

The Link Model

The top level view of the multiprocessor architecture used by the Cmpware
development environment is illustrated in Figure 1. The system consists of two primary
layers. At the bottom layer is a collection of processing nodes. These node may be
standard processor simulation objects, custom processor simulation objects or even
hardwired nodes. The structure and design of the processor simulation objects are
discussed in other documents from Cmpware. At this time, all that is significant is that
each implements the standard Processor interface as defined in the Cmpware
com.cmpware.cmp.Processor class.

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 3

The processor simulation models exist in a two dimensional array. While it is possible
to interpret this collection of processors in any number of ways, the basic interface
assumes this 2D array structure. Above this processor array is the Multiprocessor
simulation object which defines the interface to the array of processors, as well as
supplying the definition and control of the inter-processor interconnection network.

Of note is the interface between the Processor and the Network. A key concept in the
default Cmpware behavior is that inter-processor communication exists as channels
accessed via Memory Mapped IO. What this means is that some memory addresses
which exists outside of the range of normal processor memory are used to access
external resources. In this case the resource is a Link object used for communication.

This Memory Mapped IO approach is significant because it permits a simple and well-
defined linkage between the processor and the network and between the hardware and
the software. The memory address of the communication port is the only information
that all components in the system must share. The other advantage of this approach
are that it does not break the existing uniprocessor system. The software development
tools such as the compiler still function normally. As well, the processor architecture
does not require any special modification to support memory mapped IO.

All of this said, this is the default behavior of the system. Like much of the Cmpware
development environment, more sophisticated interfaces may be put into place. These
will, however, tend to be more difficult to implement and will tend to have an impact of
other external portions of the system, such as the processor architecure and the
associated processor development tools such as compilers, assemblers and linkers.

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

 Figure 1: The Cmpware multiprocessor structure.

Building a Link Model Page 4

The Link Definition

The basis of all network interconnection models in the Cmpware system is a Java
abstract class called Link. This class defines the structure of the Java classes used to
build the communication channels used by the inter-processor communication
networks. The Link class implements two interfaces, the MemoryMappedIOReader
and the MemoryMappedIOWriter These two interfaces are used to seperate the
input and output port interfaces of the Link class. This permits portions of the
multiprocessor which are only concerned with the input port to have access to that port
and portions of the multiprocessor which are only concerned with the output port to
have access to that port. This simplifies the interface and also makes the
implementation and use less error-prone. Figure 2 below shows the
MemoryMappedIOReader interface. The individual methods are discussed in more
detail in the following paragraphs.

read(): The read() method is used to return the currently available data from the
read port of the Link. This method may also throw a MemoryMappedIOException.
This exception can be thrown for a variety of reasons, but it is primarily used to control
the synchronization between communicating processors. By default, the Link object
functions as a fully synchronized communication resource. This means that data is first
written to the link by a processing node, then later read by another processing node.
This strict sequence of operations is supported by the Link interface. This permits

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 2: The MemoryMappedIOReader interface.

public int read() throws MemoryMappedIOException;
public void readCommit();
public void setReadAddress(int addr);
public int getReadAddress();
public int getReadCount();
public int getReadStallCount();
public boolean isReadable();
public int getValue();

Building a Link Model Page 5

synchronized communication between processors without data being lost. Data may be
lost in one of two cases. The first is when data is read before anything was written
(overread). This results in a previously read piece of data being re-read, or perhaps an
uninitialized value piece of data being read. The second case is data being written
before it was read (overwrite). This results in data being overwritten and destroyed
before it has had a chance to be read. Both of these cases result in incorrect values
being communicated. The read() method supports a
MemoryMappedIOException to be thrown in either of these cases. Inside of the
processor models, these exceptions are used to stall the processor until the link is
available for communication.

readCommit(): The next method is the readCommit(). This method is perhaps
the most complicated of the class. Because Cmpware performs a simulation is of a
multiprocessor running on a uniprocesson platform, some allowance must be made for
proper sequencing of events. This is perhaps a subtle point, but an important one.

In order for the simulation to run accurately, each processor must execute each cycle in
unison, then respond to communication events from Links. If each processor performs
its communication over its links during the processor simulation, data may be
communicated across processors within the same simulation cycle.

For instance: suppose Processor A is sending data to Processor B across a Link. The
simultator will simulate Processor A for cycle N, which sends its data to Processor B.
Now Processor B is simulated for Cycle N, and it sees the new data from Processor A.
But Processor B was not supposed to see this data from Processor A until Cycle N+1!
The serial nature of the simulation has hit a problem in dealing with the parallel nature
of the architecture.

This is a well-known and well-understood problem in simulation, and there are many
techniques for handling this. In the Cmpware system, we have opted to expose this to
the model builders in order to provide a higher-performance solution. The basic
solution is to have a commit scheme. This means that the actual update of the state of
the Link is not changed in the read (or write) method, but is instead done later in the
commit() method. This causes all communication to happen after all processor
nodes have been simulated. This is handled transparently by the Cmpware simulator
and done at the proper time to guarantee correct ordering and simulation of the
multiprocessor.

For example, if the Link implementation is a FIFO, the read() and write()
methods will return their correct values or throw their exceptions as expected. But the
commit() method will be used update any necessary pointers and flags that provide
the control. Appendix A gives the full source code listing for the FIFO link. It is a good

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 6

guide for illustrating the functionality of the Link interface and the behavior of the
commit() method..

setReadAddress(): The setReadAddress() method is not crucial to the correct
functioning of the link. It simply sets the address that the reading processor uses to
access this port. Having this address as part of the Link object just makes it easier
other portions of the software to display link status.

getReadAddress(): The getReadAddress() method returns the address value
set in the setReadAddress() method.

getReadCount(): The getReadCount() method returns an internal counter
which the link maintains to keep track of the number of reads performed on this link.
This is not crucial to the functionality of the link, but it is simple to implement and is
highly recommended for debug and performance analysis purposes.

getStallCount(): The GetStallCount() method returns an internal counter
which the link maintains to keep track of the number of stalls performed on this link.
This is essentially the number of times an exception was thrown on a read indicating
that the link did not have data available for read. Like the Read Count, this is not
crucial to the functionality of the link, but it is simple to implement and is highly
recommended for debug and performance analysis purposes.

isReadable(): isReadable() is the method which determines if the link has data
available for read. This method may be used by the read() method to determine if
an exception will be thrown on a read. This method may also be used for polling
schemes for reading ports.

getValue(): The getValue() method returns the current output value of the port.
This is used primarily for status display and should not be used as a substitute for the
read() method.

This is the implementation of the read port of a Link. While there are eight methods,
many just return a simple local value and others should take only a few simple lines of
code.

The other side of the link, the write port, has a very similar interface. Figure 3 below
shows the MemoryMappedIOWriter interface. The individual methods are discussed
in more detail in the following paragraphs. The implementation of the
MemoryMappedIOWriter is symmetrical to the implementation of the
MemoryMappedIOReader and provides similar access to the write port of the Link.

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 7

write(): The write() method is used to send data to the write port of the Link. This
method may also throw a MemoryMappedIOException. This exception can be
thrown for a variety of reasons, but it is primarily used to control the synchronization
between communicating processors. Like in the read() method, this exception is
thrown when a write is attempted and the Link is unable to accept the data. Typically
this occurs in situations such as a full FIFO. This exception is used by the processor
models to stall the processor to re-try the write() on the next cycle.

writeCommit(): The next method is the writeCommit(). Like readCommit(),
this method is used to provide the proper simulation sequencing when processors
communicate. Esentially, the write() method is used to send a value to the input
port and perhaps throw an exception if necessary. The commit() method is used later
in the simulation cycle to update the state of the Link. This typically means updating
any control flags or pointers. For more information on this subject, see the paragraph in
this document describing the read() method, and the source code listing of the FIFO
link in Appendix A.

setWriteAddress(): The setWriteAddress() method is not crucial to the
correct functioning of the link. It simply sets the address that the writing processor uses
to access this port. Having this address as part of the Link object just makes it easier
for other parts of the software to display link status.

getWriteAddress(): The getWriteAddress() method returns the address

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 3: The MemoryMappedIOWriter interface.

public int write() throws MemoryMappedIOException;
public void writeCommit();
public void setWriteAddress(int addr);
public int getWriteddress();
public int getWriteCount();
public int getWriteStallCount();
public boolean isWriteable();
public int getValue();

Building a Link Model Page 8

value set in the setWriteAddress() method.

getWriteCount(): The getWriteCount() method returns an internal counter
which the link maintains to keep track of the number of writes performed on this link.
This is not crucial to the functionality of the link, but it is simple to implement and is
highly recommended for debug and performance analysis purposes.

getWriteStallCount(): The GetWriteStallCount() method returns an
internal counter which the link maintains to keep track of the number of write stalls
performed on this link. This is essentially the number of times an exception was thrown
on a write indicating that the link could not accept data. Like the Write Count, this is not
crucial to the functionality of the link, but it is simple to implement and is highly
recommended for debug and performance analysis purposes.

isWriteable(): isWriteable() is the method which determines if the link can
accept data for write. This method may be used by the write() method to
determine if an exception will be thrown on a write. This method may be used for
polling schemes for writing ports.

getValue(): The getValue() method returns the current output value of the port.
This is used primarily for status display and should not be used as a substitute for the
read() method.

This is the implementation of the write port of a Link. While there are eight methods,
many just return a simple local value and others should take only a few simple lines of
code.

Compiling the Link Model

Once the Link class is implemented in Java, it must be compiled. This can be done
with any standard Java compiler, but there are a few things that should be mentioned.
First, because this class relies on other classes already in the Cmpware system, access
to these classes must be provided. The code for these classes can be found in a Java
JAR file in the Eclipse plugin.

If you are using Eclipse to develop this model, you should go to the Project -->
Properties menu item. This will bring up a dialog box. Select the Java Build Path
item. This will bring up a tabbed window, Select the Libraries tab. From there you will
click on the Add External JARs ... button. This will bring up a dialog box asking for the
location of the JAR file. This JAR file can be found under your Eclipse plugins
directory, under the most recent plugin from Cmpware. The name of the JAR file is

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 9

ide.jar. This should immediately resolve any dependency errors. Other Java
development systems should have a similar method for including external JAR files.
Consult the documentation for your particular system.

Testing the Model

At this point we have a compiled Java class file that will serve as the Link model for the
FIFO Link. But this class file currently exists as a single Java file in its own project.
This must now be made visible to the rest of the Cmpware code. Fortunately, this is a
very simple process. All that is required is that the directory containing the class is
specified in the Java CLASSPATH environment variable. Setting this variable is
system dependent, but should be well documented in your system and in the Java
documentation.

Perhaps the best way to test the new link model is using the Cmpware command line
debug monitor. This tool is embedded in the ide.jar file in the Eclipse Cmpware
plugin directory. Use this JAR file as below to bring up the command line debug
monitor.

$ java -classpath ide.jar com.cmpware.cmp.MpMon

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 4: Testing the Network in MpMon.

$ java com.cmpware.cmp.MpMon
(null)> a 2 2 NIOS2 Torus FIFO
[0,0]NIOS2> t
0000: 3a880100 nop

[0,0]NIOS2> t
0004: 06fe3f00 br -8

[0,0]NIOS2> t
0000: 3a880100 nop

[0,0]NIOS2> p 1 1
[1,1]NIOS2> t
0004: 06fe3f00 br -8

[1,1]NIOS2> q
$

Building a Link Model Page 10

This will bring up a prompt that will permit you to interact with the new model. The first
step is to allocate a 2 x2 array of NIOS2 processors with a Torus network built using
FIFO links. Then attempt to execute some code in one or more of the processors.
Figure 4 below shows an array running on two different processors in the array. This
particular test just verifies that all of the new code is visible and working. It is probably
best to move to the Eclipse IDE to do detailed testing of the new Link definition.

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 5: The Cmpware Eclipse Preferences.

Building a Link Model Page 11

Using the Model in the Eclipse IDE

In general, if the command line interface operates properly, the IDE should also. Once
the Cmpware Eclipse IDE is brought up, the FIFO link must be selected from the
Windows --> Preferences --> Cmpware preference page. This is done by changing
the Link field to FIFO. In addition, the Model Path field must be set to indicate the
directory containing the model. This directory should be the one containing the
com/cmpware/cmp/models/ directory tree, which contains the HardNodeDemo.class
file. Note that the standard CLASSPATH search for class files may or may not work
depending on your system. It is best to use the Model Path preference to indicate the
location of these models. Once the Ok button is pressed, a new processor array with a
Torus network is allocated and initialized. Figure 6 shows the Cmpware IDE using this
new Link network model. The applicatication being in this example sends a single

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Figure 6: The FIFO Link in the Eclipse IDE.

Building a Link Model Page 12

value to the node to the right. This value is passed in a circle through the array. The
pattern of each node communicating on a different cycle can be seen in the main array
display. In addition, the table of Link activity verifies this expected behavior.

System Issues and Interconnection Networks

Using a simple, regular network in a design is often the best overall solution. It
simplifies the hardware design and provides the programmer with a uniform view of the
architecture, which should also simplify the software development. In addition, the very
high bandwidth of the interconnections on a single-chip device makes many of the
issues concerning interconnection network design obsolete. It is unlikely that a single
processing element can saturate the bandwidth available to a single dedicated
communication channel, much less to several channels.

However, the full architectural design space should be explored. One option is to
provide a very rich interconnection fabric. While the utilization of the links may be low,
they tend to be relatively inexpensive hardware resources. Even providing a fully-
connected network, which directly connects every processor to every other processor in
the array, may be an acceptable solution for smaller arrays. And because of the
memory mapped approach used by Cmpware, such large or rich networks will not have
an appreciable impact on simulation performance.

Also, more irregular Networks may be useful. This is likely to be of interest in more
special-purpose architecutures targetting a single application. But such a design may
be the simplest path to a functional system. Such an ad-hoc or irregular
interconnection network is not difficult to describe in the Cmpware system, but the
complexity will be proportional to the complexity of the network. And while this
approach may complicate the software portion of the design in some cases, it may in
fact simplify the software in other cases. It may be worth the effort to explore the
possibilities of various interconnection schemes, especially since it is so easy to do in
the Cmpware environment.

Conclusions

The document has described the modeling of the links used by the inter-processor
communication networks in the Cmpware environment. The process is relatively simple
and can quickly produce high-quality link and network simulation models with little
effort. It is estimated that a link and network simulation model for a regular network can
be engineered in just a few minutes. Once implemented, such models can be used
with a variety of processors and links to create and explore new architectures and
applications with the CmpwareConfigurable Multiprocessor Development Kit.

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 13

Appendix A: The FIFO.java Source Code

package com.cmpware.cmp.links;
import com.cmpware.cmp.MemoryMappedIOException;
import com.cmpware.cmp.Link;

/**
** This class implements a synchronous FIFO. This is
** used as a link component to build inter-processor
** communication networks. The input port of the FIFO
** is typically mapped to a memory mapped IO address
** on one processor and the output port to a memory
** mapped IO address on another processor. This creates
** a communication link between the processors.
**
** Note that the internal implementation of this link
** object requires some care to support the multiprocessor
** simulation environment. All state update should be
** done at commit time.
**
** <p>
** Copyright (c) 2004 Cmpware, Inc. All Rights Reserved.
** <p>
**
** @author SAG
*/

public class FIFO extends Link {

/** Copyright string */
public final static String copyright =
 "Copyright (c) 2004 Cmpware, Inc. All Rights Reserved.";

/**
** This constructor allocates a FIFO using the default
** FIFO size.

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 14

*/

public FIFO() {
 fifo = new int[DEFAULT_SIZE+1];
 } /* end FIFO() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.Link#setBufferSize(int)
*/

public void setBufferSize(int size) {
 fifo = new int[size+1];
 head = 0;
 tail = 0;
 } /* end setBufferSize() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOWriter#write(int)
*/

public void write(int val) throws MemoryMappedIOException {
 /* Stall the writing processor on overwrite */
 if (isFull() == true) {
 writeStallCount++;
 throw mmioe;
 }

 /* Write the data*/
 /*(but don't update the pointers until commit) */
 fifo[tail] = val;
 writtenFlag = true;
 } /* end write() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOReader#read()
*/

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 15

public int read() throws MemoryMappedIOException {
 /* Check for underread */
 if (isEmpty() == true) {
 readStallCount++;
 throw mmioe;
 }

 /* Read the data */
 /* (but don't update the pointers until commit) */
 readFlag = true;
 return (fifo[head]);
 } /* end read() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOWriter#writeCommit()
*/

public void writeCommit() {

 if (writtenFlag == true) {
 tail = ((tail+1)%fifo.length);
 writtenFlag = false;
 writeCount++;
 }

 } /* end writeCommit() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOReader#readCommit()
*/

public void readCommit() {

 if (readFlag == true) {
 head = ((head+1)%fifo.length);
 readCount++;
 readFlag = false;

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 16

 }

 } /* end readCommit() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOReader#setReadAddress(int)
*/

public void setReadAddress(int addr) {
 readAddr = addr;
 } /* end setReadAddress() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOReader#getReadAddress()
*/

public int getReadAddress() {return (readAddr);}

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOReader#getReadCount()
*/

public int getReadCount() {return (readCount);}

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOReader#getReadStallCount()
*/

public int getReadStallCount() {return (readStallCount);}

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOWriter#setWriteAddress(int)
*/

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 17

public void setWriteAddress(int addr) {
 writeAddr = addr;
 } /* end setWriteAddress() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOWriter#getWriteAddress()
*/

public int getWriteAddress() {return (writeAddr);}

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOWriter#getWriteCount()
*/

public int getWriteCount() {return (writeCount);}

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOWriter#getWriteStallCount()
*/

public int getWriteStallCount() {return (writeStallCount);}

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOWriter#getValue()
*/

public int getValue() {return(fifo[head]);}

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOReader#isReadable()
*/

public boolean isReadable() {
 return (!isEmpty());

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 18

 } /* end isReadable() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.MemoryMappedIOWriter#isWriteable()
*/

public boolean isWriteable() {
 return (!isFull());
 } /* end isReadable() */

/*
** Privates
*/

/**
** This method returns a true if the FIFO is
** empty and a false otherwise.
*/

private boolean isEmpty() {
 if (head == tail)
 return (true);
 else
 return (false);
 } /* end isEmpty() */

/**
** This method returns a true if the FIFO is
** full and a false otherwise.
*/

private boolean isFull() {
 if (((tail+1)%fifo.length) == head)
 return (true);
 else
 return (false);
 } /* end isFull() */

/** The default FIFO size */

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

Building a Link Model Page 19

public static final int DEFAULT_SIZE = 8;
/** The FIFO data */
private int fifo[];
/** The FIFO 'head' pointer */
private int head = 0;
/** The FIFO 'tail' pointer */
private int tail = 0;
/** The read address (for information only) */
private int readAddr = 0;
/** The write address (for information only) */
private int writeAddr = 0;
/** The number of reads */
private int readCount = 0;
/** The number of writes */
private int writeCount = 0;
/** The number of read stalls */
private int readStallCount = 0;
/** The number of write stalls */
private int writeStallCount = 0;
/** This flag indicates that a write
** was performed on this cycle */
private boolean writtenFlag = false;
/** This flag indicates that a read
** was performed on this cycle */
private boolean readFlag = false;
/** A Memory Mapped IO Execption
** (so we don't have to keep re-allocating them) */
private MemoryMappedIOException mmioe = new
MemoryMappedIOException();

} /* end class FIFO */

Version 1.0.0 (January 21, 2005)
Copyright © 2005 Cmpware, Inc. All rights reserved.

