
Building a Network Model Page 1

Building a Cmpware Network Model

Cmpware, Inc.

Introduction

The Cmpware Configurable Multiprocessor Development Kit (CMP-DK) is based
around fast simulation models for multiple processors. While the processing nodes
themselves may be standard or custom processors, or even hard-wired logic, perhaps
the defining element of such a system is its interconnection network. The ability to
define and program a multiprocessor is highly dependent on the ability to define the
network for the architecture.

The Cmpware CMP-DK supplies a set of basic models for both use and for illustration
on how to construct new custom models. Once implemented, these network models
may be quickly deployed in the simulation environment and even completely changed
with a few mouse clicks. This document is provided to give an overview of the the inter-
processor network models and process of building network models in the Cmpware
environment.

The Cmpware Multiprocessor Structure

A multiprocessor system at its most basic is a collection of processing elements
connected by some communication network. This definition, while functional, provides
for a very wide variety of possible multiprocessor architectures. Because this definition
is so flexible, it has been difficult to find design and development tools that adequately
support more than a small subset of the multiprocessor architectures made possible by
this definition. The Cmpware CMP-DK seeks to refine this definition to provide a more
limited, but still highly functional definition of multiprocessing.

By limiting the scope of the definition of multiprocessing, Cmpware seeks to provide a
development environment which supports a variety of useful multiprocessing platforms,
while lowering the effort to produce both the software development environment and
the actual hardware and software implementation of such architectures. The Cmpware
CMP-DK seeks to take a relatively small number of components and support the fast
and flexible arrangement of these components to produce a complete multiprocessor
model. This model will then be used by the development environment, which provides

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Network Model Page 2

a sophisticated interface for software design and evaluation. The development
environment supports three basic types of customizable models for constructing
multiprocessors. These are:

• Processor: the processor is the element which does much of the work in the
multiprocessor. This element is typically a standard instruction set architecture with
a standard High Level Language (HLL) compiler used for programming. Nodes may
take other forms, including hard wired login, but for the purposes of this discussion
they are considered simply the the processing elements that are connected together
to produce the multiprocessor.

• Network: The network is the hardware used by the processors to communicate with
each other. The network is primarily defined by its topology. This may take a
variety of regular forms, such as a mesh, which connects each processor to its
nearest neighbors. It may implement any regular or irregular connection of
processing nodes.

• Links: The links are the components used to implement the Network. If the Network
is a collection of communication channels, the Links are the implementation of these
channels. These may be components such as a shared register or a FIFO and may
implement a variety of interfaces used by the processors.

This document is primarly concerned with the implementation of the Network model.
Reference will be made to both the Processor and Link models, but these are
discussed in more detail elsewhere.

The Interconnection Network Model

The top level view of the multiprocessor architecture used by the Cmpware
development environment is illustrated in Figure 1. The system consists of two primary
layers. At the bottom layer is a collection of processing nodes. These node may be
standard processor simulation objects, custom processor simulation objects or even
hardwired nodes. The structure and design of the processor simulation objects are
discussed in other documents from Cmpware. At this time, all that is significant is that
each implements the standard Processor interface as defined in the Cmpware
com.cmpware.cmp.Processor class.

The processor simulation models exist in a two dimensional array. While it is possible
to interpret this collection of processors in any number of ways, the basic interface
assumes this 2D array structure. Above this processor array is the Multiprocessor
simulation object which defines the interface to the array of processors, as well as

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Network Model Page 3

supplying the definition and control of the inter-processor interconnection network.

Of note is the interface between the Processor and the Network. A key concept in the
default Cmpware behavior is that inter-processor communication exists as channels
accessed via Memory Mapped IO. What this means is that some memory address
which exists outside of the range of normal memory are used to access external
resources. In this case the resource is a Link object used for communication.

This Memory Mapped IO approach is significant ibecause it permits a simple and well-
defined linkage between the processor and the network and between the hardware and
the software. A simple address of the communication port is the only information that
all components in the system must share. The other advantage of this approach are
that it does not break the existing uniprocessor system. The software development
tools such as the compiler still function normally. As well, the processor architecture
does not require any special modification to support memory mapped IO.

All of this said, this is the default behavior of the system. Like much of the Cmpware
development environment, more sophisticated interfaces may be put into place. These
will, however, tend to be more difficult to implement and will tend to have an impact of
other external portions of the system, such as the processor architecure and the
associated processor development tools such as compilers, assemblers and linkers.

The Network Definition

The basis of all network interconnection models in the Cmpware system is a Java
abstract class called Network. This class defines the structure of the Java classes

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

 Figure 1: The Cmpware multiprocessor structure.

Building a Network Model Page 4

used to build the inter-processor communication networks. This interface is relatively
simple, containing the single abstract method, connectNetwork(), which must be
supplied by the network implementer.

Figure 2 shows this method. Note that this method takes in two parameters. The first is
called mp, which defines a multiprocessor system which has already been allocated.
The second parameter is a String indicating the name of link used to construct the
network. This link must be a vaild Link object implementing the interface in the
com.cmpware.cmp.links class.

The implementation of the ConnectNetwork() method is as simple or as complex as
the network it is defining. Figure 3 gives a fragment of code used to connect two
processors with a single link. The code is relatively self-explanatory. A new Link
object is created, using the Link.get() helper method. This link is then added as an
input to one processor and as an output to another. This provides a single
communication channel between the two processors.

All that is required in the rest of the connectNetwork() method is to repeat this
process, once for each link in the network. Every effort should be made to make this
network conform fully to all of the parameters used to define the multiprocessor. In
particular the number of rows and columns in the multiprocessor should be used as well
as the name of the link passed in as a parameter. Using hard-wired values may be
acceptable, depending on the application, but for a little extra effort, a completely
generalized Network definition can be produced which can be used in other projects, or
for experimentation with other types of links and other sized arrays.

Appendix A at the end of this document gives the complete source code for the
Network class used to define the default Torus topology. A Torus is essentially a two-
dimensional mesh, with all of the nearest neighbor processors connected to each other.
On the edges of the array, the links are wrapped around to the node on the other side.
This has the advantage that all of the processors have the same number of useful links
and there are no dangling links. Note that the difference between the definition of a
simple Mesh and a Torus is relatively trivial. Removal of the modulus (“%”) operation
and testing for the ends of the array will convert this Torus definition to that of a Mesh.
Other topologies, such as a fully connected array can be done in even less code.

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 2: The Link.connectNetwork() method..

public abstract void connectNetwork(Multiprocessor mp,
String linkName) throws LinkException;

Building a Network Model Page 5

Compiling the Network Model

Once the Network class is implemented in Java, it must be compiled. This can be done
with any standard Java compiler, but there are a few things that should be mentioned.
First, because this class relies on other classes already in the Cmpware system, access
to these classes must be provided. The code for these classes can be found in a Java
JAR file in the Eclipse plugin.

If you are using Eclipse to develop this model, you should go to the Project -->
Properties menu item. This will bring up a dialog box. Select the Java Build Path
item. This will bring up a tabbed window, Select the Libraries tab. From there you will
click on the Add External JARs ... button. This will bring up a dialog box asking for the
location of the JAR file. This JAR file can be found under your Eclipse plugins
directory, under the most recent plugin from Cmpware. The name of the JAR file is
ide.jar. This should immediately resolve any dependency errors. Other Java
development systems should have a similar method for including external JAR files.
Consult the documentation for your particular system.

Testing the Model

At this point we have a compiled Java class file that will serve as the network model for
the Torus network. But this class file currently exists as a single Java file in its own

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 3: Adding a Link between two processors.

/* Get a new Link */
link = Link.get(linkName);

/* Attach the output port */
mp.get(i, j).addOutput(OUT, link);

/* Attach the input port */
mp.get((i+1), j).addInput(IN, link);

/* The address of the input port */
final int IN = 0x80000000;
/* The address of the output port */
final int OUT = 0x80000004;

Building a Network Model Page 6

project. This must now be made visible to the rest of the Cmpware code. Fortunately,
this is a very simple process. All that is required is that the directory containing the
class is specified in the Java CLASSPATH environment variable. Setting this variable
is system dependent, but should be well documented in your system and in the Java
documentation.

Perhaps the best way to test the new network model is using the Cmpware command
line debug monitor. This tool is embedded in the ide.jar file in the Eclipse
Cmpware plugin directory. Use this JAR file as below to bring up the command line
debug monitor.

$ java -classpath ide.jar com.cmpware.cmp.MpMon
This will bring up a prompt that will permit you to interact with the new model. The first
step is to allocate a 2 x2 array of NIOS2 processors with a Torus network built using
SharedRegister links. Then attempt to execute some code in one or more of the
processors. Figure 4 below shows an array running on two different processors in the
array. This particular test just verifies that all of the new code is visible and working. It
is probably best to move to the Eclipse IDE to do detailed testing of the new Network
definition.

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 4: Testing the Network in MpMon.

$ java com.cmpware.cmp.MpMon
(null)> a 2 2 NIOS2 Torus SharedRegister
[0,0]NIOS2> t
0000: 3a880100 nop

[0,0]NIOS2> t
0004: 06fe3f00 br -8

[0,0]NIOS2> t
0000: 3a880100 nop

[0,0]NIOS2> p 1 1
[1,1]NIOS2> t
0004: 06fe3f00 br -8

[1,1]NIOS2> q
$

Building a Network Model Page 7

Using the Model in the Eclipse IDE

In general, if the command line interface operates properly, the IDE should also. Once
the Cmpware Eclipse IDE is brought up, the Torus network must be selected from the
Windows --> Preferences --> Cmpware preference page. This is done by changing
the Network field to Torus. In addition, the Model Path field must be set to indicate the
directory containing the model. This directory should be the one containing the
com/cmpware/cmp/models/ directory tree, which contains the HardNodeDemo.class

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 5: The Cmpware Eclipse Preferences.

Building a Network Model Page 8

file. Note that the standard CLASSPATH search for class files may or may not work
depending on your system. It is best to use the Model Path preference to indicate the
location of these models. Once the Ok button is pressed, a new processor array with a
Torus network is allocated and initialized. Figure 6 shows the Cmpware IDE using this
new Torus network model. The applicatication being in this example sends a single
value to the node to the right. This value is passed in a circle through the array. The
pattern of each node communicating on a different cycle can be seen in the main array
display. In addition, the table of Link activity verifies this expected behavior.

System Issues and Interconnection Networks

Using a simple, regular network in a design is often the best overall solution. It

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 6: The Torus network in the Eclipse IDE.

Building a Network Model Page 9

simplifies the hardware design and provides the programmer with a uniform view of the
architecture, which should also simplify the software development. In addition, the very
high bandwidth of the interconnections on a single-chip device makes many of the
issues concerning interconnection network design obsolete. It is unlikely that a single
processing element can saturate the bandwidth available to a single dedicated
communication channel, much less to several channels.

However, the full architectural design space should be explored. One option is to
provide a very rich interconnection fabric. While the utilization of the links will be low,
they tend to be relatively inexpensive hardware resources. Even providing a fully-
connected network, which directly connects every processor to every other processor in
the array, may be an acceptable solution for smaller arrays. And because of the
memory mapped approach used by Cmpware, such large or rich networks will not have
an appreciable impact on simulation performance.

Also, more irregular Networks may be useful. This is likely to be of interest in more
special-purpose architecutures targetting a single application. But such a design may
be the simplest path to a functional system. Such an ad-hoc or irregular
interconnection network is not difficult to describe in the Cmpware system, but the
complexity will be proportional to the complexity of the network. And while this
approach may complicate the software portion of the design in some cases, it may in
fact simplify the software in other cases. It may be worth the effort to explore the
possibilities of various interconnection schemes, especially since it is so easy to do in
the Cmpware environment.

Conclusions

The document has described the modeling of inter-processor communication networks
in the Cmpware environment. The process is relatively simple and can quickly produce
high-quality network simulation models with little effort. It is estimated that a network
simulation model for a regular network can be engineered in just a few minutes. Once
implemented, such network models can be used with a variety of processors and links
to create and explore new architectures and applications with the
CmpwareConfigurable Multiprocessor Development Kit.

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Network Model Page 10

Appendix A: The Torus.java Source Code

package com.cmpware.cmp.networks;
import com.cmpware.cmp.Multiprocessor;
import com.cmpware.cmp.Network;
import com.cmpware.cmp.LinkException;
import com.cmpware.cmp.Link;

/**
** This implements a 2D Torus (a 2D grid with the ends
** connected around -- a dougnhut) network. It is
** implemented using Shared Registers.
**
** <p>
** Copyright (c) 2004 Cmpware, Inc. All Rights Reserved.
** <p>
**
** @author SAG
*/

public class Torus extends Network {

/*
** (non-Javadoc)
** @see com.cmpware.cmp.INetwork#connectNetwork()
*/

public void connectNetwork(Multiprocessor mp, String linkName)
 throws LinkException {
 int i;
 int j;
 int rows;
 int cols;
 Link link;

 cols = mp.getCols();
 rows = mp.getRows();
 for (i=0; i<rows; i++)

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Network Model Page 11

 for (j=0; j<cols; j++) {
 /* North output */
 link = Link.get(linkName);
 mp.get(i, j).addOutput(NORTH, link);
 mp.get(((i+1)%rows), j).addInput(SOUTH, link);

 /* East output */
 link = Link.get(linkName);
 mp.get(i, j).addOutput(EAST, link);
 mp.get(i, ((j+1)%cols)).addInput(WEST, link);

 /* South output */
 link = Link.get(linkName);
 mp.get(i, j).addOutput(SOUTH, link);
 mp.get(((i+rows-1)%rows), j).addInput(NORTH, link);

 /* West output */
 link = Link.get(linkName);
 mp.get(i, j).addOutput(WEST, link);
 mp.get(i, ((j+cols-1)%cols)).addInput(EAST, link);

 } /* end for(j) */

 } /* end connectNetwork() */

/** The start address of the IO registers */
public static int IO_ANCHOR = 0x80000000;
/** The address of the 'north' IO register */
public static int NORTH = (IO_ANCHOR + 0);
/** The address of the 'north' IO register */
public static int EAST = (IO_ANCHOR + 4);
/** The address of the 'north' IO register */
public static int SOUTH = (IO_ANCHOR + 8);
/** The address of the 'north' IO register */
public static int WEST = (IO_ANCHOR + 12);
} /* end class Torus */

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

