
Building a Processor Model Page 1

Building a Processor Model

Cmpware, Inc.

Introduction

The Cmpware Multiprocessor Development Environment is based around fast
simulation models for processors. These models may be standard architectures from
traditional microprocessor vendors, or they may be custom processors developed for a
specific application. One of the features of the Cmpware system is the relative ease
with which even fairly sophisticated processor models can be built. This document is
provided to give an introduction to the process of building models.

The Processor Abstract Class

The basis of all processor models in the Cmpware system is a Java class called
Processor. This class contains much of the machinery necessary for modeling a
standard processor. This involves such generic functionality as managing instruction
fetch, branching with delay slots, and returning various pieces of information used by
the command line and Eclipse interfaces. All that is required to produce a new
processor model is to create a new class which extends Processor.

Because Processor is a “abstract” class, it also contains some methods which the
new class will have to supply. Figure 1 shows these specific methods. Each of these
methods must be supplied by the Processor subclass. Each will be discussed briefly
below.

Decode(): The decode() method supplies the instruction decode for the processor.
The input parameter is an instruction represented as an integer. This method will use
the instruction to return the decoded opcode for the instruction represented by this
instruction. In some cases, decoding is very simple. In the case of many simple RISC
machines, this method may be as simple as returning a field (say, the first eight bits) of
the instruction. In other cases, a more complicated decode is required. One comment
about the decode method is that the value returned may not necessarily be related to
the exact bit pattern of the opcode. It must only return a unique instruction code that
the execute() method can recognize. Additionally, this method must throw an

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 2

IllegalOpcodeException for all possible illegal opcodes. Note that breakpoints are
implemented as an illegal opcode, so it is important that the breakpoint opcode throw
this exception.

Execute(): The execute() method is responsible for the execution of the
instruction in the processor. It takes in as its only parameter an integer representation
of the instruction to be executed. This method will typically call the decode() method
and use the resulting opcode to select which instruction functionality will be executed.
In smaller, simpler processors, this may all be done inside of the execute() method,
typically with a switch() statement. With more sophisticated processors, and
perhaps for maintainability of the code, it is advisable that each instruction be
implemented in its own method, which is then called from a switch() statement in
execute. Finally, execute() may propagate a MemoryAccessException or an
IllegalRegisterException. These will be thrown by other pieces of the
Processor class and should not be of direct interest when constructing the execute
() method.

GetPC() and setPC(): The getPC() and setPC() methods are supplied to give the
simulator access to the model's Program Counter (PC). These should be extremely
simple methods returning a register or portion of a register. The reason these are
specified as methods and not as simply as some sort of pointer to a register is that
many processors only use a subset of bits in a register in a variety of ways. Some
processors will use, for instance, the lower 20 bits in a status register. Others may shift
the value, ignoring the lower bits. Some processors may do both. At the most
complex, it is expected that these methods will perform some shifting and masking of a

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

 Figure 1: The Processor class abstract methods.

public abstract int decode(int instr) throws
IllegalOpcodeException;

public abstract void execute(int instr)
 throws MemoryAccessException,
 IllegalRegisterException;

public abstract int getPC();
public abstract void setPC(int pc);
public abstract String dasm(byte instr[]);

Building a Processor Model Page 3

register.

Dasm(): The dasm() method takes in as its only parameter a byte array
representing an instruction. It is expected to return a string representing the text
assembly language for the instruction. While this method is not completely essential to
the operation of the simulator, it provides very useful information to the user interfaces.
It is strongly advised that the time be taken to make this method as complete and
accurate as possible.

The ProcGen Processor Model Generator

Building Cmpware processor models is not particularly difficult. With an instruction set
definition at hand, it becomes mostly tedious typing of opcodes and instruction
functions. To assist in this effort and to help provide more accurate models, a
processor generator, ProcGen, has been built. ProcGen is in no way a model
specification language and has a very simple input format. This tool can dramatically
reduce the effort required to build a model, while simultaneously improving the accuracy
and the quality of the code.

The ProcGen tool is a stand-alone utility and may be downloaded as a single compiled
Java class file, ProcGen.class To execute this program, from a command-line prompt,
type the command below:

$ java ProcGen
Usage: java ProcGen <processor name> <template file> <data
file>

ProcGen has responded with a “usage” help. ProcGen requires three parameters: the
name of the processor being modeled, a template file and a data file. The processor
name is just a string containing the name of the processor being modeled, for instance
“RISC16”. The template data file is supplied by Cmpware and is available as
ProcTemplate.j This file contains some Java code with tags used by ProcGen to
customize the file. Finally, the last parameter is the name of a data file which contains
a processor definition. This file must be entered by the person constructing the model.
The format is described in the section below.

The ProcGen Model Format

The format for the Processor model was designed to be as simple as possible. This
is because this data is not a complete modeling language, but rather a helper to get an

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 4

initial Java source file constructed. This Java source file can then be edited as
necessary.

The reason for this approach is twofold. First, a complex language for specifying
models would put an additional burden on the modeler. This language would have to
be learned and understood. Since some compilable code is inevitably generated by
such tools, it was decided that the effort would go into providing a clean, simple and
efficient interface in the native language (Java) which would be easy to use. The
second reason for avoiding a processor modeling language is that such languages tend
to become complicated as they attempt to cover all the possibilities in processor design.
It has been our experience that all the possibilities can never really be covered, and it is
best to provide a good structure to model these architectural features instead.

Figure 2 gives an example of a simple processor modeled with this description. The
format it very straight forward. The file is line-based with three fields per line
recognized. The first field contains the opcode name, the second field, the numeric
code associated with this opcode. The remainder of the line consists of Java code

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 2: A simple processor.

--
-- This describes a simple
-- (fictional) processor
--
-- Copyright (c) 2004 Cmpware, Inc.
-- All Rights Reserved.
--

add 1 r[c] = r[a] + r[b];
addi 2 r[c] = r[c] + imm8;
sub 3 r[c] = r[a] - r[b];
xor 4 r[c] = r[a] ^ r[b];
not 5 r[c] = ~r[b];
or 6 r[c] = r[a] | r[b];
and 7 r[c] = r[a] & r[b];
shl 8 r[c] = r[a] << r[b];
shr 9 r[c] = r[a] >> r[b];
br 10 branch(imm12);
bnz 11 if (r[a] != 0) branch(r[b]);
bz 12 if (r[a] == 0) branch(r[b]);
ld 13 r[c] = read32(r[b]);
st 14 write32(r[c], r[b]);

Building a Processor Model Page 5

which implements this instruction. Note that this code is intended to model the typically
simple functionality of a processor instruction. If the operation is more complex and
requires several lines, a function call placeholder may be used. Once the Java code is
generated by ProcGen, the function can me implemented in the resulting Java source
code file.

Figure 2 describes a simple processor that provides a variety of typical instructions. It
is in no way a complete processor, but it can be used to illustrate the model building
process. This file has been saved to Simple.txt and used to drive the ProcGen
generation of the model. The command below shows ProcGen being run with this file
for its input. Note that ProcGen writes to the standard output, so the resulting model
will be piped to the file Simple.java.

$ java ProcGen Simple ProcTemplate.j Simple.txt >
Simple.java

Fixing Compile-time Errors

Now we have the basic Java file for the Simple processor model. But running a Java
compiler on this file will immediately produce several errors. ProcGen has done the
tedious work and generated dozens of lines of well-structured and commented code.
But some work remains to configure and flesh out this model.

This is a good time to have a look at the generated code. All of the required abstract
methods are there, as well as some definitions and data structures to make the process
of building the model easier. This Java source code file also contains some basic
instructions for customizing your model.

Perhaps the first and largest source of errors are the missing variables used in the
instruction descriptions. The ProcGen description uses elements such as a b, c, imm8
and imm12, but never defines these. By simply defining private integers variables for
each of these elements in the Simple.java source code file, nearly all of the errors
disappear.

The next step is to resolve the import dependencies from the rest of the Cmpware
code. This code can be found in a Java JAR file in the Eclipse plugin. If you are using
Eclipse to develop this model, then you will have to go to the Properties and click on
the Libraries tab. From there you will click on the Add External JARs ... button. This
will bring up a dialog box asking for the location of the JAR file. This JAR file can be
found under your Eclipse plugins directory, under the most recent plugin from
Cmpware. The name of the JAR file is ide.jar. This should immediately resolve these

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 6

missing dependencies. Other Java development systems should have a similar method
for including external JAR files. Consult the documentation for your particular system.

At this point, there are still two more outstanding errors. The op_ld() and op_st()
methods have unhandled MemoryAccessExceptions. These are the load and store
operations, respectively, so we will have to tell the model that these operations will
potentially throw these memory access exceptions. Figure 3 shows these two methods
with the added throws MemoryAccessException in the method interface.

Note that the load and store operation use the predefined Memory access methods
read32() and write32(). These access methods should always be used to read
and write memory. See the com.cmpware.cmp.Memory class documentation for
other memory access methods.

Configuring the Model

At this point, the model compiles correctly, but there are still some missing pieces that
need to be supplied. First, as mentioned previously is the decode() method. This
brings up the subject of the instruction format, which we have ignored until now.

Rather than trying to specify the instruction formats as part of the ProcGen modeling
language, this part of the model is left to be defined in the model Java code. This
approach was taken primarily because instruction formats vary widely across processor
architectures. It is believed that trying to support this variety in the modeling language
would unnecessarily complicate its syntax.

The instruction for used for the Simple processor is, well, simple. All instructions are 16
bits. The first four bits are the opcode. For most of the instructions, the remaining bits

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 3: Fixing the unhandled exceptions.

/** The LD operation */
private void op_ld() throws MemoryAccessException {
 r[c] = read32(rb);
 } /* end op_ld() */

/** The ST operation */
private void op_st() throws MemoryAccessException {
 write32(rc, rb);
 } /* end op_st() */

Building a Processor Model Page 7

will be broken up into three 4-bit fields. Each of these fields will address a register in
the 16-entry register file. Corresponding to the specification given to ProcGen, these
fields will be called c, a, and b. These represent the destination and two source
registers, respectively.

The two other fields used in the branch operations are the immediate instructions are
imm8 and imm12. These are the last 8 and 12 bits in the instruction word, respectively.

This gives all of the information necessary to implement the decode() method. The
actual decode is rather simple, with the first four bits being the returned opcode. The
other instruction values will also be extracted and stored to the local variables for later
use. Figure 4 shows the implementation of the decode() method.

Of course, this is a relatively simple processor. But even more complex processors
may have a simple decode and may not be any more complicated to implement than
this method. Of note here is that all fields, even overlapping ones, are all decoded.

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 4: The decode() method.

public int decode(int instr) throws
IllegalOpcodeException {
 int opcode = 0;

 /* *** implement decode logic here *** */
 opcode = ((instr >> 12) & 0x0f);
 c = ((instr >> 8) & 0x0f);
 a = ((instr >> 4) & 0x0f);
 b = (instr & 0x0f);
 imm8 = (instr & 0x00ff);
 imm12 = (instr & 0x0fff);

 /* Check for illegal opcodes (incl. breakpoint) */
 switch (opcode) {
 case 0:
 case 15:
 throw(new IllegalOpcodeException(instr));
 } /* end switch{} */

 return (opcode);

 } /* end decode() */

Building a Processor Model Page 8

This is somewhat inefficient, since no instruction will make use of all of these fields. But
it is much simpler to implement, and a small price to pay in performance, as opposed to
decoding only the necessary fields in each of the instruction implementation methods.

The next major piece of implementation is the dasm() method. This involves filling in
the supplied switch() statement with string representations of the instruction. Since
there are only three instruction formats here, the implementation is relatively simple.
This code is not reproduced here but may be viewed in the final Simple.java source file.

Now all that is left is to be sure that all of the defaults provided by ProcGen are
appropriate. Earlier the setPC() and getPC() abstract methods were mentioned.
These by default use Special Register 0 (sr[0]) as the Program Counter. This is an
acceptable value.

The Simple() constructor also contains several run-time configurable values. Most of
these are acceptable for this processor, but at least one should be changed. The
instruction size is currently set to four bytes (32 bits). This should be changed to
defineInstructionSize(2) to indicate a 2-byte (16 bit) instruction word.

The Special Register size is defaulted to 16 entries. This is harmless, but there is only
one Special Register defined in this architecture, so we may which to change this value
from 16 to 1. If this is done, the sregName[] string array should also me modified to
have a single element, “pc”.

Lastly, there a noop and a breakpoint instruction must be defined. The defaults are 32-
bit values set to 0x00000000 and 0xffffffff, respectively. Since both 0 and 0xf
(15) are undefined, we can keep 0xffffffff as a breakpoint, but it must be
shortened to 16 bits. The NOOP instruction, however, should be re-defined to be
something which does not change the state of the processor. One such instruction
would be to add zero to a register. So ADDI r[0],0 would be an appropriate NOOP.
This must be defined as a a 16-bit value. Since the ADDI opcode is 2, the binary code

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 5: Some hand-compiled Simple code.

/* Some simple test code loaded at reset */
private final static byte testCode[] = {
 (byte) 0x01, (byte) 0x20, // ADDI 0,1
 (byte) 0x00, (byte) 0x20, // noop
 (byte) 0x00, (byte) 0xa0 // BR 0
 };

Building a Processor Model Page 9

for the NOOP instruction is 0x2000. Note that like disassembly, this is not a crucial
component of the model, but it will help improve its usability.

This is all that is required to produce the model for the Simple processor. But because
we have just made up this architecture, there are no compilers or assemblers available
for it. In order to perform some basic testing, the model will be modified slightly to pre-
load a piece of hand-compiled code. This is done by defining a local byte array
containing some Simple binary code as in Figure 5.

In order to load this code at reset, we will just overload the standard
Processor.reset() method and load this code at address zero. The code to
perform this is shown in Figure 6. It will load this code fragment at address 0 in the
memory each time the processor is reset. This technique is also useful for emulation a
Read-Only Memory (ROM) image that may be either permanently in memory or loaded
upon reset.

Testing the Model

At this point we have a compiled Java class file that will serve as the simulation model
for the Simple processor. But this class file currently exists as a single Java file in its
own project. This must now be made visible to the rest of the Cmpware code.
Fortunately, this is a very simple process. All that is requires is that the directory
containing the class is specified in the Java CLASSPATH environment variable.

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 6: Loading the hand-compiled Simple code at reset.

public void reset() {
 /* Call Processor.reset() first */
 super.reset();
 /* Write the test code to address 0 */
 try {
 write(0, testCode);
 } catch (MemoryAccessException mae) {
 System.out.println("Warning: Could not load
test code.");
 }

 } /* end reset() */

Building a Processor Model Page 10

Setting this variable is system dependent, but should be well documented in your
system and in the Java documentation.

Perhaps the best way to test the new processor model is using the Cmpware command
line debug monitor. This tool is embedded in the ide.jar file in the Eclipse
Cmpware plugin directory. Use this JAR file as below to bring up the command line
debug monitor.

$ java -classpath ide.jar com.cmpware.cmp.MpMon
This will bring up a prompt that will permit you to interact with the new model. The first
step is to allocate a 1 x1 array of Simple processors, then attempt to execute the pre-
loaded code. Figure 7 below give a partial trace that demonstrates the Simple
processor running.

From this brief test, it is clear that the processor is behaving properly. Code is
executing and sequencing properly, and registers are being updated and displayed as
expected. Further testing, including the use of such features as breakpoints, is

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 7: The Simple processor running under the command line debug
monitor.

$ java -classpath ide.jar com.cmpware.cmp.MpMon
(null)> a 1 1 Simple
[0,0]Simple> d 0
0000: 0120 addi r[0], 1
0002: 0020 nop
0004: 00a0 br 0

[0,0]Simple> t
0000: 0120 addi r[0], 1

[0,0]Simple> s 100
[0,0]Simple> r
r0:00000022 r1:00000000 r2:00000000 r3:00000000
r4:00000000 r5:00000000 r6:00000000 r7:00000000
r8:00000000 r9:00000000 r10:00000000 r11:00000000
r12:00000000 r13:00000000 r14:00000000 r15:00000000

pc:00000000

[0,0]Simple>

Building a Processor Model Page 11

recommended at this point.

Finally, a very simple performance test indicates that this simulaton moder, on this
portion of code, is capable of executing ten million instructions is approximately four
seconds on a standard AMD Athlon 1800+ PC running Windows XP. While this is a
relatively simple processor, this is a good indication of the performance one may expect
with these models. In fact, adding instructions will do little to slow the performance of
this sort of architectural model.

Using the Model in the Eclipse IDE

If the command line test works, the Eclipse IDE should also function. Once the
Cmpware Eclipse IDE is brought up, the Simple processor must be selected from the

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 8: Setting preference for the Simple processor in the Eclipse IDE

Building a Processor Model Page 12

Windows --> Preferences --> Cmpware preference page. This is done by changing
the Processor field to Simple. In addition, the Model Path field must be set to indicate
the directory containing the model. This directory should be the one containing the
com/cmpware/cmp/models/ directory tree, which contains the HardNodeDemo.class
file. Note that the standard CLASSPATH search for class files may or may not work
depending on your system. It is best to use the Model Path preference to indicate the
location of these models.

Once the Ok button is pressed, a new Simple processor array is allocated and
initialized. Figure 9 shows the Cmpware IDE using the new Simple model. This view
shows the registers and the disassembly after several steps. Checking the other views
verifies that the processor is indeed functioning correctly.

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Figure 9: The Simple processor running under the Eclipse IDE

Building a Processor Model Page 13

Some Comments on Architecture Modeling

So far we have used the ProcGen tool to produce the basic simulation model which we
then modified to complete describe the Simple architecture. But in the real world,
architectures are sometimes more complex. This is the reason that Cmpware has take
the approach of providing a source-level (Java) interface to its model rather than relying
on a more complicated specification language based approach. In most real-world
architectures there are features which may not be easily modeled using other less
flexible techniques.

There are many examples, but a simple and interesting one is the Register 0 in the
Altera NIOS II processor. This register is always set to zero. Writing to it has no
effect, and all reads return a zero. This is unusual, but potentially useful behavior for a
register. It does, however, break most of the assumptions one would have concerning
the simulation of a register file.

There are many approaches to modeling this behavior. An to support these various
approaches the Cmpware interface permits re-defining of essentially all of the
underlying standard processor model. The solution that was used by Cmpware to
implement this architectural feature was to simply add a single line of code at the very
end of the execute() method setting r[0] to zero. This does the trick, clearing out
any data set by an instruction before the next instruction has a chance to read it.
Because this is in the execute() method, there is some small performance penalty to
be paid on each cycle, but it is small compared to more complex schemes. And the
code ends up being simpler and more maintainable.

Conclusions

The document has described the modeling of a processor in the Cmpware
environment. The process is relatively simple and can produce fast, high-quality
processor simulation models with relatively little effort. It is estimated that just a few
hours are required to engineer a simulation model for a modern processor.

Note: all of the files described in this document can be downloaded as a ZIP file
from: http://www.cmpware.com/Secure/Modeling.zip

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 14

Appendix A: The Simple Processor definition

package com.cmpware.cmp.models;
import com.cmpware.cmp.Processor;
import com.cmpware.cmp.Memory;
import com.cmpware.cmp.MemoryAccessException;
import com.cmpware.cmp.IllegalRegisterException;
import com.cmpware.cmp.IllegalOpcodeException;

/**
** Describe your processor here.
**
** <p>
** Copyright (c) 2004 Cmpware, Inc. All Rights Reserved.
** <p>
**
** @author SAG
*/

/*
** Things to do to implement your processor:
**
** - Set the definitions in the constructor to
** appropriate values.
** - Implement the processor decode logic in
** decode().
** - Modify execute() to pre-compute any values
** that may be required by the op_*() methods.
** These values should also be defined as
** private data at the end of this class.
** - Modify the getPC() and setPC() methods. The
** Program Counter (PC) is often a Special Register
** or some bitfield contained in a Special Register.
** If it is not, it may be useful to add a Special
** register to hold the PC value.
** - Implement the disassembler in dasm(). This
** usually involves grouping similar operations
** and building a string representation of these
** operations. You may want to look at other
** implementations as examples.

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 15

** - Implement the op_*() methods. There should be
** exactly one op_*() method per decoded instruction.
** These should directly modify registers and perhaps
** local data.
** - Define the processor NOOP instruction. Note that
** this may be a dedicated instruction or just an
** operation such as AND 0,0,0 that does not modify
** the state of the processor.
** - Define the processor Breakpoint instruction. Note
** that this may be a dedicated instruction or just a
** selected instruction with an Illegal Opcode.
** - Define the General Purpose Register names.
** - Define the Special Purpose Register names.
**
** For many processors, this is all that needs to be done.
** More complex processors may require overloading of
** some of the predefined methods in the Processor()
** class. How and when this is done is highly dependent
** on the particular processor implementation.
**
*/

public class Simple extends Processor {

/** Copyright string */
public final static String copyright =
 "Copyright (c) 2004 Cmpware, Inc. All Rights Reserved.";

/**
** The constructor
**
*/

public Simple() {
 /* Define the processor */
 defineName("Simple");
 defineInstructionSize(2);
 defineRegisters(16);
 defineSpecialRegisters(1);
 defineBranchDelay(0);
 defineRegisterNames(regName);
 defineSpecialRegisterNames(sregName);

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 16

 defineOpcodeNames(opcodeName);
 defineNoop(NOOP);
 defineBreakpoint(BREAKPOINT);

 /* Resize the memory */
 resize(64*1024);

 /* Reset the processor */
 reset();

 } /* end Simple() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.Processor#decode(int)
*/

public int decode(int instr) throws IllegalOpcodeException {
 int opcode = 0;

 /* *** implement decode logic here *** */
 opcode = ((instr >> 12) & 0x0f);
 c = ((instr >> 8) & 0x0f);
 a = ((instr >> 4) & 0x0f);
 b = (instr & 0x0f);
 imm8 = (instr & 0x00ff);
 imm12 = (instr & 0x0fff);

 /* Check for illegal opcodes (incl. breakpoint) */
 switch (opcode) {
 case 0:
 case 15:
 throw(new IllegalOpcodeException(instr));
 } /* end switch{} */

 return (opcode);

 } /* end decode() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.Processor#execute(int)

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 17

*/

public void execute(int instr)
 throws MemoryAccessException,
 IllegalRegisterException {

 /* *** pre-compute any necessary values here *** */

 /* Execute instruction */
 switch (currentInstrCode) {
 case ADD: op_add(); break;
 case ADDI: op_addi(); break;
 case SUB: op_sub(); break;
 case XOR: op_xor(); break;
 case NOT: op_not(); break;
 case OR: op_or(); break;
 case AND: op_and(); break;
 case SHL: op_shl(); break;
 case SHR: op_shr(); break;
 case BR: op_br(); break;
 case BNZ: op_bnz(); break;
 case BZ: op_bz(); break;
 case LD: op_ld(); break;
 case ST: op_st(); break;
 /* Opcode not found */
 default:
 /* Illegal opcodes should be caught in */
 /* the decode -- but just in case */
 System.out.println("Unexpected illegal opcode
encountered. "+
 "(Instruction:
0x"+Integer.toHexString(instr)+")");
 } /* end switch{} */

 } /* end execute() */

/*
** (non-Javadoc)
** @see com.cmpware.cmp.Processor#getPC()
*/

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 18

public int getPC() {return (sr[0]);}

/*
** (non-Javadoc)
** @see com.cmpware.cmp.Processor#setPC()
*/

public void setPC(int pc) {sr[0] = pc;}

/*
** (non-Javadoc)
** @see com.cmpware.cmp.Processor#dasm(byte[])
*/

public String dasm(byte instr[]) {
 int instrCode;
 String dasmStr;
 int instrWord;
 /* Convert bytes to int */
 instrWord = toInt(instr);

 /* Decode the instruction */
 try {
 instrCode = decode(instrWord);
 } catch (IllegalOpcodeException ioe){
 return ("<error>");
 } /* end try{} */

 /* Start with the opcode string */
 dasmStr = opcodeName[instrCode];

 /* Catch NOOP */
 if (toInt(getNoop()) == instrWord)
 return ("nop");
 /* *** pre-compute any necessary values here *** */
 c = ((instrWord >> 8) & 0x0f);
 a = ((instrWord >> 4) & 0x0f);
 b = (instrWord & 0x0f);
 imm8 = (instrWord & 0x00ff);
 imm12 = (instrWord & 0x0fff);

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 19

 /* Decode instruction */
 switch (instrCode) {
 case ADD:
 case SUB:
 case XOR:
 case OR:
 case AND:
 case SHL:
 case SHR:
 dasmStr = dasmStr + " r[" + c + "], r[" + a + ", r[" +
 b + "]";
 break;
 case NOT:
 dasmStr = dasmStr + " r[" + c + "], r[" + a + ", r[" +
 b + "]";
 break;
 case BR:
 dasmStr = dasmStr + " " + imm12;
 break;
 case BNZ:
 case BZ:
 dasmStr = dasmStr + " r[" + a + ", r[" + b + "]";
 break;
 case ADDI:
 dasmStr = dasmStr + " r[" + c + "], " + imm8;
 break;
 case LD:
 case ST:
 dasmStr = dasmStr + " r[" + c + ", r[" + b + "]";
 break;
 default:
 dasmStr = "<error>";
 break;
 } /* end switch{} */

 return(dasmStr);
 } /* end dasm() */

/*
** (non-Javadoc)

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 20

** @see com.cmpware.cmp.Processor#reset()
*/

public void reset() {
 /* Call Processor.reset() first */
 super.reset();
 /* Write the test code to address 0 */
 try {
 write(0, testCode);
 } catch (MemoryAccessException mae) {
 System.out.println("Warning: Could not load test code.");
 }

 } /* end reset() */

/** The ADD operation */
private void op_add() {
 r[c] = r[a] + r[b];
 } /* end op_add() */

/** The ADDI operation */
private void op_addi() {
 r[c] = r[c] + imm8;
 } /* end op_addi() */

/** The SUB operation */
private void op_sub() {
 r[c] = r[a] - r[b];
 } /* end op_sub() */

/** The XOR operation */
private void op_xor() {
 r[c] = r[a] ^ r[b];
 } /* end op_xor() */

/** The NOT operation */

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 21

private void op_not() {
 r[c] = ~r[b];
 } /* end op_not() */

/** The OR operation */
private void op_or() {
 r[c] = r[a] | r[b];
 } /* end op_or() */

/** The AND operation */
private void op_and() {
 r[c] = r[a] & r[b];
 } /* end op_and() */

/** The SHL operation */
private void op_shl() {
 r[c] = r[a] << r[b];
 } /* end op_shl() */

/** The SHR operation */
private void op_shr() {
 r[c] = r[a] >> r[b];
 } /* end op_shr() */

/** The BR operation */
private void op_br() {
 branch(imm12);
 } /* end op_br() */

/** The BNZ operation */
private void op_bnz() {
 if (r[a] != 0) branch(r[b]);
 } /* end op_bnz() */

/** The BZ operation */
private void op_bz() {
 if (r[a] == 0) branch(r[b]);

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 22

 } /* end op_bz() */

/** The LD operation */
private void op_ld() throws MemoryAccessException {
 r[c] = read32(r[b]);
 } /* end op_ld() */

/** The ST operation */
private void op_st() throws MemoryAccessException {
 write32(r[c], r[b]);
 } /* end op_st() */

/** The NOOP instruction */
private final static byte NOOP[] =
 {(byte) 0x00, (byte) 0x20};
/** The Breakpoint code */
private final static byte BREAKPOINT[] =
 {(byte) 0xff, (byte) 0xff};

/** The General purpose register names */
private static final String regName[] = {
 "r0", "r1", "r2", "r3",
 "r4", "r5", "r6", "r7",
 "r8", "r9", "r10", "r11",
 "r12", "r13", "r14", "r15"
 };

/** The Special purpose register names */
private static final String sregName[] = {
 "pc"};

/** The opcode names (mapped to instruction codes) */
private static final String opcodeName[] = {
"<illegal opcode>", "add", "addi", "sub",

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

Building a Processor Model Page 23

 "xor", "not", "or", "and",
 "shl", "shr", "br", "bnz",
 "bz", "ld", "st"

 };

/** The instruction codes */
private final static int ADD = 1;
private final static int ADDI = 2;
private final static int SUB = 3;
private final static int XOR = 4;
private final static int NOT = 5;
private final static int OR = 6;
private final static int AND = 7;
private final static int SHL = 8;
private final static int SHR = 9;
private final static int BR = 10;
private final static int BNZ = 11;
private final static int BZ = 12;
private final static int LD = 13;
private final static int ST = 14;

/* *** put any additional data structures here *** */

private int a;
private int b;
private int c;
private int imm8;
private int imm12;
/* Some simple test code loaded at reset */
private final static byte testCode[] = {
 (byte) 0x01, (byte) 0x20, // ADDI 0,1
 (byte) 0x00, (byte) 0x20, // noop
 (byte) 0x00, (byte) 0xa0 // BR 0
 };

}; /* end class Simple */

Version 1.0.0 (January 21, 2005)
Copyright © 2004 Cmpware, Inc. All rights reserved.

