
PROGRAMMING FINE-GRAINED

RECONFIGURABLE

ARCHITECTURES

APPROVED BY

DISSERTATION COMMITTEE:

Supervisor:

Copyright

by

Steven Anthony Guccione

1995

To my family

PROGRAMMING FINE-GRAINED

RECONFIGURABLE

ARCHITECTURES

by

STEVEN ANTHONY GUCCIONE, B.S.E.E., M.S.E.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 1995

Acknowledgments

First and foremost, I would like to thank Dr. Gonzalez for his unflagging sup-

port throughout this research. This research would not have been possible

without his guidance and good advice.

I would also like to thank the other committee members, Professors

Swartzlander, Cragon, Szygenda, and Jenevein. All gave generously of their

time and each contributed, at some time, in steering me toward more fruitful

areas of research, or away from the rocks.

Also I would like to thank the other researchers in this area, particularly

Eric Dellinger, Martin Poenie, Tom Kean and Jeff Arnold for the interesting

and ongoing exchange of ideas.

Finally, I would like to thank Craig Fowler of Texas Instruments, who

set me on the path toward this degree.

STEVEN ANTHONY GUCCIONE

The University of Texas at Austin

May 1995

v

PROGRAMMING FINE-GRAINED

RECONFIGURABLE

ARCHITECTURES

Publication No.

Steven Anthony Guccione, Ph.D.
The University of Texas at Austin, 1995

Supervisor: Mario J. Gonzalez, Jr.

Recently, several systems based on reconfigurable logic have been de-

signed and built. These systems permit arbitrary digital logic functions to be

configured in hardware. This ability to dynamically configure such circuits

promises to provide the flexibility of a software based system with the perfor-

mance of custom hardware.

This dissertation proposes a high level language approach to program-

ming reconfigurable logic based machines. This approach uses a data parallel

variant of the C language. To support this high level language approach, a novel

reconfigurable logic device is described. These devices are in turn interfaced to

a memory system and used to perform computation.

To demonstrate the validity of this approach, several computationally

intensive algorithms are implemented and simulated. Among these algorithms

are cellular automata, image processing, neural networks, the Mandelbrot set

vi

and the Fourier transform. In addition, selected portions of the Livermore

FORTRAN kernels are simulated. Estimates of performance and required sys-

tem resources are reported for each algorithm.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

Chapter 2. Background and Related Work 5

2.1 Programmable Logic . 5

2.1.1 Memory Devices . 6

2.1.2 Programmable Arrays . 8

2.1.3 Cellular Arrays . 9

2.1.4 Programmable Interconnections 11

2.2 Fine Grained Reconfigurable Architectures 12

2.2.1 Early Work . 14

2.2.2 Application Specific Architectures 17

2.2.3 Reconfigurable Logic Coprocessors 18

2.2.4 Custom Instruction Set Architectures 19

2.2.5 Reconfigurable Supercomputers 20

2.3 Other Related Work . 21

2.4 Overview of This Work . 22

Chapter 3. Reconfiguration 24

3.1 A Reconfigurable Model of Computing 26

3.2 Instruction Replacement . 28

3.3 Reconfiguration Overhead . 30

viii

3.4 Amdahl’s Law . 33

3.5 Algorithms . 35

Chapter 4. The Software Architecture 37

4.1 An Arithmetic Calculation . 37

4.2 Vector Processing . 39

4.3 Exploiting Temporal Parallelism . 41

4.4 Exploiting Spatial Parallelism . 43

4.5 A Systolic Dataflow Framework . 44

4.6 The Scan Operator . 45

4.7 An Example: Calculating ex . 46

4.8 Delay Balancing . 48

4.9 Optimizations . 50

4.10 The Programming Model . 54

4.11 Mixed Valued Striding . 56

Chapter 5. The Microarchitecture 64

5.1 Existing Programmable Logic Architectures 65

5.2 The 3I/3O/1F Cell . 66

5.3 The Hexagonal Array . 67

5.4 Some Example Circuits . 69

5.4.1 Boolean Calculations . 70

5.4.2 An Adder Circuit . 71

5.4.3 A Multiplier Circuit . 72

5.4.4 Scan Circuits . 73

5.5 Circuit Complexity . 74

Chapter 6. The System Architecture 77

6.1 The Host Machine . 77

6.2 The Reconfigurable Processing Unit 78

6.3 The Memory System . 79

ix

Chapter 7. Applications 82

7.1 Cellular Automata . 83

7.1.1 Linear Cellular Automata . 83

7.1.2 Conway’s Life . 86

7.1.3 Image Processing . 91

7.1.4 Performance . 102

7.1.5 Other Related Work . 103

7.2 String Matching . 103

7.2.1 String Comparison . 104

7.2.2 A Dynamic Programming Algorithm 105

7.2.3 Searching Genetic Databases 107

7.2.4 A Parallel Implementation 108

7.2.5 Conditionals . 111

7.2.6 The Data Parallel Implementation 113

7.2.7 Performance . 115

7.3 The Mandelbrot Set . 117

7.3.1 Functional Decomposition . 118

7.3.2 The Initial Condition Vector 120

7.3.3 The Calculation . 124

7.3.4 Circuit Complexity and Performance 126

7.4 Neural Networks . 126

7.4.1 The Neural Network Model 127

7.4.2 A Vector Representation . 129

7.4.3 The Sigmoid Function . 133

7.4.4 Circuit Extraction . 135

7.4.5 Performance . 137

7.5 The Fourier Transform . 139

7.5.1 The Discrete Fourier Transform 140

7.5.2 The Fast Fourier Transform 144

7.5.3 The FFT in 2D . 153

7.5.4 Performance . 156

7.6 The Livermore FORTRAN Kernels 158

x

7.6.1 The Kernel Code . 159

7.6.2 Fully Vectorizable Loops . 161

7.6.3 Partially Vectorizable Loops 165

7.6.4 Unvectorizable Loops . 169

7.6.5 Unstructured Loops . 177

7.6.6 Performance . 181

Chapter 8. Summary 183

8.1 Future Directions . 186

Bibliography 189

Vita 207

xi

List of Tables

2.1 An architectural classification of reconfigurable machines. 16

4.1 Some useful striding parameters. 60

5.1 Complexity of the arithmetic circuits. 75

7.1 Performance of cellular automata implementations. 102

7.2 Mathematical expressions and their language constructs. 172

7.3 The LFK performance parameters. 182

8.1 System requirements of the algorithms. 185

xii

List of Figures

2.1 A ROM circuit. 6

2.2 A PLA with 3 inputs, 3 product terms and 2 outputs. 8

2.3 The Algotronix CAL architecture. 10

2.4 The Algotronix CAL logic cell. 10

2.5 The Xilinx architecture. 11

2.6 The Xilinx CLB. 12

2.7 A reconfigurable system. 13

2.8 The coprocessor approach. 18

2.9 The CISA approach. 19

3.1 The traditional tradeoff of flexibility and performance. 24

3.2 A reconfigurable model of computing. 27

3.3 An RPU with two banks. 33

4.1 C code to process vectors. 40

4.2 Vector C code to process vectors. 41

4.3 Chaining of functional units. 42

4.4 Parallel functional units. 43

4.5 A systolic dataflow circuit. 44

4.6 An example of the add-scan operation. 45

4.7 A circuit implementing add-scan(). 46

4.8 A data parallel C code fragment for calculating ex. 47

4.9 A circuit for calculating ex. 48

4.10 Pipeline balancing via delay insertion. 49

4.11 A strength reduction optimization. 51

4.12 A common subexpression elimination optimization. 52

4.13 Optimization using constants. 53

4.14 Preservation of accuracy. 56

xiii

4.15 The syntax for the mixed valued stride operation. 58

4.16 Column access of row major data (N = 3). 59

4.17 The striding circuit. 61

4.18 The modulo circuit. 62

5.1 A 3I/3O/1F cell. 67

5.2 The cellular array. 68

5.3 A 4 bit AND implementation. 70

5.4 A 4 bit adder implementation. 71

5.5 A 2 bit multiplier implementation. 72

5.6 A 4 bit add-scan implementation. 74

5.7 A 4 bit and-scan implementation. 74

6.1 The system architecture. 77

7.1 The data parallel code for the linear cellular automata. 84

7.2 Output of the linear cellular automata implementation. 85

7.3 The linear cellular automata circuit. 85

7.4 The data parallel code for life. 87

7.5 The extracted circuit for life. 89

7.6 The evolution of a simple pattern in life. 90

7.7 Some 3 x 3 image processing masks. 93

7.8 The data parallel code for mask based image processing. 93

7.9 The extracted image processing circuit. 95

7.10 The effect of the smoothing operation. 96

7.11 An edge detection example. 98

7.12 The data parallel code for edge detection. 99

7.13 The edge detection circuit. 100

7.14 Laplacian edge detection. 101

7.15 The values used to calculate d. 106

7.16 The values used to calculate d. 107

7.17 An example table. 109

7.18 The table realigned for vectorization. 110

xiv

7.19 The values new used to calculate d. 111

7.20 A conditional statement. 111

7.21 The implied dual assignment. 112

7.22 The conditional circuit. 113

7.23 The data parallel code for the string matching algorithm. 113

7.24 The circuit for the gene matching algorithm. 114

7.25 The code for complex addition. 119

7.26 The complex addition circuit. 119

7.27 Code for complex multiplication. 120

7.28 The complex multiplication circuit. 121

7.29 Code for the initial condition vector. 123

7.30 The initial condition circuit. 124

7.31 The code to calculate the Mandelbrot set. 125

7.32 The Mandelbrot circuit. 125

7.33 The Mandelbrot set. 126

7.34 A three layer feed-forward network. 128

7.35 A digital representation of a neuron. 129

7.36 An Exclusive-OR network. 130

7.37 Code to calculate the output of the hidden layer. 132

7.38 Sigmoid activation functions. 134

7.39 Code for the sigmoid activation function. 135

7.40 The sigmoid activation function circuit. 135

7.41 The neural network circuit. 136

7.42 The data parallel code for the DFT. 142

7.43 The circuit for the DFT. 143

7.44 The 32 samples of the function cos(2πn/8). 144

7.45 The DFT of the function cos(2πn/8). 145

7.46 A standard representation of the FFT. 147

7.47 The basic FFT cell. 147

7.48 An alternate representation of the FFT. 148

7.49 Vectorizing the FFT. 149

7.50 The data parallel code for the FFT. 150

xv

7.51 The extracted FFT circuit. 151

7.52 A square image and its 2D FFT. 155

7.53 A more complex image and its 2D FFT. 155

7.54 Performance sorted by MFLOPs for a CRAY X-MP. 159

7.55 The original FORTRAN code for Loop 1. 161

7.56 The data parallel code for Loop 1. 161

7.57 The configured circuit for Loop 1. 162

7.58 The original FORTRAN code for Loop 3. 163

7.59 The data parallel code for Loop 3. 164

7.60 The configured circuit for Loop 3. 164

7.61 The original FORTRAN code for Loop 12. 165

7.62 The data parallel code for Loop 12. 165

7.63 The configured circuit for Loop 12. 166

7.64 The original FORTRAN code for Loop 22. 167

7.65 The data parallel code for Loop 22. 167

7.66 The configured circuit for Loop 22. 168

7.67 The original FORTRAN code for Loop 5. 170

7.68 The dataflow graph for Loop 5. 170

7.69 The data parallel code for Loop 5. 174

7.70 The configured circuit for loop 5. 175

7.71 The original FORTRAN code for Loop 11. 176

7.72 The data parallel code for Loop 11. 176

7.73 The configured circuit for Loop 11. 177

7.74 The original FORTRAN code for Loop 24. 178

7.75 The data parallel code for Loop 24. 179

7.76 The configured circuit for Loop 24. 180

xvi

Chapter 1

Introduction

Traditionally, there have been two major methods for implementing algorithms.

Most commonly, an algorithm is coded in software and implemented on a gen-

eral purpose processor. In other cases, custom hardware is designed and built

to implement the given algorithm. The custom hardware solution is usually

characterized by its high performance, but relatively high cost and inflexibility.

The software solution, on the other hand, has typically been characterized by

its high degree of flexibility, but at a lower cost and lower performance. The

choice of creating a custom hardware solution to a problem as opposed to a

software-based solution has traditionally been based on cost and performance

versus flexibility.

A relatively new technology, reconfigurable logic, provides a new way

to implement algorithms that promises to change this traditional tradeoff be-

tween cost, performance and flexibility. Reconfigurable logic permits custom

digital circuits to be dynamically created and modified via software. This abil-

ity to create and modify digital logic without physically altering the hardware

provides a more flexible and lower cost solution to the implementation of cus-

tom hardware. This represents a significant divergence from the traditional

hardware / software tradeoff.

1

2

Reconfigurable logic devices were first introduced commercially in the

mid-1980s. These initial devices had a relatively low density and could be used

to create custom circuits of several hundred equivalent logic gates. These early

devices were used primarily by hardware designers to group random logic into

a single package. This approach to logic design has two advantages. First,

the combining of several integrated circuits into a single package reduces the

size and cost of the circuit board. Perhaps more important, however, is the

ability to modify the hardware design with a simple software change. Because

the function of the reconfigurable logic device is defined by software, design

errors can be corrected without having to fabricate new hardware. Existing

system hardware may also be modified and upgraded without any physical

modifications. Only a change to the software used by the reconfigurable logic

device is required.

As the density of these devices has increased, it has became appar-

ent that entire systems can be constructed using reconfigurable logic. This

type of architecture can provide a flexible approach to producing customizable

hardware. Several such systems based on reconfigurable logic have been de-

signed and implemented. All have been used successfully to accelerate selected

algorithms. Larger systems have reported performance surpassing that of con-

ventional supercomputers while using modest amounts of hardware running at

relatively low clock speeds.

While impressive levels of performance have been reported, none of these

architectures are poised to challenge more traditional high-performance sys-

tems. Currently, the main limitation in the use of systems based on reconfig-

urable logic is software. The task of programming these systems is typically

3

based on hardware design rather than traditional high level language program-

ming.

It is the goal of the research described in this dissertation to describe a

system which:

• makes large scale use of reconfigurable logic

• achieves supercomputer levels of performance

• is programmable using traditional high level programming languages

Chapter 2 begins with a short history of programmable logic. The uses of

this technology, particularly reconfigurable logic, is outlined. Special emphasis

is given to machines which use reconfigurable logic to perform general purpose

computations. Other related work is also examined.

Chapter 3 explores some of the issues involved in the large scale use

of reconfigurable logic. Of particular interest is the high overhead, both in

terms of hardware and software, associated with the use of reconfigurable logic.

Conclusions based on these architectural features are drawn.

Chapter 4 proposes a parallel programming methodology based on the

computational characteristics of reconfigurable logic. Compilation and opti-

mization techniques are presented. Finally, a novel construct for providing

data sequencing is presented.

Chapter 5 examines existing reconfigurable logic devices and proposes a

novel microarchitecture geared toward high-level computation. This microar-

chitecture directly supports the software methodology proposed in Chapter 4.

4

Chapter 6 discusses the system level architecture of a machine based on

reconfigurable logic. This architecture is designed specifically to make use of

the programming methodology described in Chapter 4 as well as the microar-

chitecture described in Chapter 5.

Chapter 7 describes the implementation of selected algorithms. These

algorithms represent a set of popular computationally intensive algorithms typi-

cally executed on parallel or vector supercomputers. A discussion of which sorts

of algorithms are not appropriate for this architecture is also presented.

Chapter 8 discusses the suitability of fine-grained reconfigurable archi-

tectures as a high-performance computing medium. Possible future directions

for this technology are mentioned.

Chapter 2

Background and Related Work

The first part of this chapter introduces programmable logic. Programmable

logic may be defined as a digital logic circuit whose behavior is defined by

software. By writing the appropriate data patterns to a programmable logic

device, logic circuits may be implemented or modified. The evolution of these

devices, from early programmable logic devices to modern reconfigurable logic

devices is briefly traced.

Programmable logic devices were initially used on a small scale, pri-

marily to simplify the hardware design process. As denser programmable logic

devices have become available, it has become feasible to build entire systems

based on this technology. The second part of this chapter is concerned with

systems constructed using a particular type of programmable logic known as

reconfigurable logic. Several interesting approaches, achieving various levels of

performance in various application areas, are discussed. Finally, other related

work is presented.

2.1 Programmable Logic

The term programmable logic is the most general term used to describe any

device which can be customized to produce a specific logic function. There are

5

6

two major types of programmable logic. The first is write-once programmable

logic. This type of logic can be programmed only once, usually before it is

installed in the system. The particular logic device, once programmed, typically

cannot be reprogrammed.

A second type of programmable logic, often referred to as reconfigurable

logic, may be reprogrammed repeatedly. These devices are unique in that they

may be modified while in-system. It is these devices which are primarily of

interest in fine-grained reconfigurable architectures. The write-once style of

devices are discussed briefly, primarily to place reconfigurable logic in a larger

context.

2.1.1 Memory Devices

The earliest, and most general form of programmable logic device is memory.

While these devices are generally associated with data storage, they may also

be viewed as programmable circuits for implementing arbitrary logic functions.

Figure 2.1: A ROM circuit.

7

Memory devices may be either programmable or reconfigurable. The

one-time programmable devices are typically referred to as Read Only Memory,

or ROM. These devices are usually implemented as two levels of logic, an AND

array and an OR array. All possible 2N input bit patterns are decoded by

the AND array. These are then selectively ORed to produce the outputs, as

shown in Fig 2.1. With this scheme, a standard hardware module can easily

be programmed to produce any possible boolean function of the inputs.

While these devices can typically only be programmed once, the function

of the hardware can still be modified by replacing the ROM device with another

device containing a new function. This swapping of a single device is typically

much simpler than other hardware modifications.

A device similar to the ROM is the Random Access Memory, or RAM.

This device also permits any arbitrary boolean function of N inputs to be im-

plemented in hardware. Rather than having to physically replace the device

to alter the function of the hardware, RAM device may be dynamically re-

programmed. By writing the proper bit patterns to the device, any output

function of the N input functions may be generated.

While the most flexible solution to customizable hardware, RAM and

ROM devices have a hardware complexity proportional to 2N . For even moder-

ately sized functions, the amount of hardware, as well as the time necessary to

write the necessary data to program the devices, becomes prohibitively large.

As an example, a boolean function of 32 inputs and 32 outputs would

require 16×109 bytes of memory. Aside from being a physically large amount of

memory, writing the bit pattern necessary to define the desired boolean function

8

would take nearly three minutes at a rate of 100 megabytes per second. If a

64 bit function is desired, the situation is much worse. Approximately 1010

gigabytes would be necessary to define the boolean function. Even if such

an enormous amount of RAM or ROM existed, it would take on the order of

thousands of years to program, even at the rate of 100 megabytes per second.

2.1.2 Programmable Arrays

While RAM and ROM devices are capable of implementing any arbitrary

boolean function, they are prohibitively expensive for implementing all but

the smallest functions. A more restricted programmable logic device similar in

structure to the ROM is the Programmable Logic Array, or PLA.

Figure 2.2: A PLA with 3 inputs, 3 product terms and 2 outputs.

These devices do not attempt to decode all possible 2N input patterns.

While structured as an AND-OR array like the ROM, these devices provide the

ability to define the inputs to the AND array, as well as to the OR array. While

the number of boolean functions which can be expressed by this structure is

reduced, it has been found that for most practical applications, this simple

structure is adequate.

9

While this type of programmable logic has only been used on a small

scale, it has served as as the basis more much of the later work in programmable

and reconfigurable logic. Early work at IBM [34, 80] as well as that of Patil

and Welch [102] cover this area in more detail.

2.1.3 Cellular Arrays

Whereas ROMs and PLAs use two levels of fixed logic and a programmable

interconnection structure to permit the definition of boolean functions, the

reverse approach was taken by cellular arrays. Rather than fixing the logic and

programming the interconnections, cellular arrays instead consist of an array of

programmable logic cells joined by fixed interconnects. Cellular arrays were an

active area of research in the late 1960s. Most prominent was the work done at

the Stanford Research Institute [129]. Research was also performed by Kautz

[62, 61] and by Minnick [92, 93]. In 1970, Shoup published his dissertation on

the subject [114]. After this, very little is found in the literature relating to

cellular arrays for several years.

In the mid-1980s, there was a resurgence in interest in cellular architec-

tures. This lull of a decade and a half is somewhat inexplicable. Perhaps the

best explanation for the resurgence during the mid-1980s is the increasing den-

sity of silicon devices. At this time, it became feasible to produce moderately

sized cellular arrays.

The first commercial offering of a fixed interconnect cellular array was

the Algotronix Cellular Array Logic or CAL device [63, 65, 64]. This device used

an interconnection scheme described by Minnick nearly a quarter of a century

earlier [92] and explored by Shoup [114] in his dissertation. The structure of

10

CLB CLB

CLB

CLB CLB

CLBCLB

CLB

CLB

Figure 2.3: The Algotronix CAL architecture.

this two-dimensional array is shown in Figure 2.3.

Unlike ROM and PLA style programmable logic devices, this cellular

approach permits arbitrary circuits using multiple levels of logic to be con-

structed. The cell of the device, called a Configurable Logic Block, or CLB, can

perform any boolean operation of two inputs. Other inputs and outputs in the

cell can be used to transfer signals to other CLBs. Since the cells are based on

RAM technology, they may be dynamically reconfigured. A simple diagram of

the CAL CLB is shown in Figure 2.4.

x y

out

Figure 2.4: The Algotronix CAL logic cell.

11

2.1.4 Programmable Interconnections

Where early programmable logic devices use fixed function logic with pro-

grammable interconnect, and cellular arrays use programmable logic with fixed

interconnect, a novel reconfigurable logic device which combines these two fea-

tures was commercially introduced by Xilinx in 1985 [17, 133]. This device was

known as the Field Programmable Gate Array, or FPGA. The flexibility of this

device made it immediately popular with designers of custom hardware.

The architecture of the Xilinx device is shown in Figure 2.5. The inter-

connection network consists of groups of wires routed between the logic cells.

The groups of wires intersect at junction points containing a programmable

switch. This switch permits signals to be routed in arbitrary paths to distant

logic blocks.

CLBCLB

CLB CLB

Figure 2.5: The Xilinx architecture.

In contrast to the cellular architectures, the Xilinx architecture features

a more complex logic cell, as shown in Figure 2.6. A function of five inputs

and two outputs can be configured. Other options such as internal feedback

12

paths and registered outputs further increase the complexity of the cell. In

more recent devices by Xilinx, this approach has been pursued further, with

even larger configurable logic cells being employed.

Combinatorial
 Function

QX

QY

F

G

a
b
c
d
e

MUX
0

1
D Q

RD

DIN
F

G

MUX
0

1
D Q

RD

QX

F

G

QY

x

y

DIN
F

G

"1" (enable)

"0" (inhibit)

(global reset)

ec

k

rd

di

Figure 2.6: The Xilinx CLB.

While a close relative to cellular architectures, the grid of programmable

interconnections give the Xilinx architecture a conceptual advantage. The sep-

aration of the logic cells and their interconnections more closely resembles the

traditional hardware design situation. It is not necessarily clear, however, that

the use of such programmable interconnect provides any material advantage

over other cellular architectures with fixed interconnection networks.

2.2 Fine Grained Reconfigurable Architectures

Much of the original motivation for developing and using reconfigurable logic

was to simplify the hardware design process. The ability to quickly modify

13

a digital logic circuit without having to physically modify the hardware gave

designers a new level of flexibility.

The extension of this concept leads to a system where all of the hardware

is reconfigurable. Such hardware should be extremely flexible. Since the system

can implement arbitrary digital circuits, virtually any custom logic function can

be configured into the system. Such a system should provide the flexibility and

programmability usually associated with an instruction set processor, but with

the performance approaching that of custom hardware.

Figure 2.7 shows the basic components of a system based on reconfig-

urable logic. The reconfigurable logic in this system, referred to here as the

Reconfigurable Processing Unit or RPU, contains one or more reconfigurable

logic devices. The RPU is interfaced to a memory system which may be cou-

pled to the RPU in a number of ways. Finally, a host processor is used for a

variety of tasks, including reconfiguration of the RPU.

Memory RPU

Host

Figure 2.7: A reconfigurable system.

The term introduced here for such a system is a fine grained reconfig-

14

urable architecture. The appellation fine grained is used to distinguish these

systems from other types of systems which may employ reconfiguration in other

ways or for other purposes [76].

2.2.1 Early Work

The idea of systems using easily modifiable hardware was explored by several

early researchers. One notable effort was the Fixed-Plus-Variable machine of

Estrin [28, 29]. This machine attempted to make use of simple, standard hard-

ware modules to accelerate software applications. While this machine did rely

on manual reconfiguration, it embodied many of the concepts used by later soft-

ware based reconfigurable machines. Several applications were implemented,

including matrix computation [31]. Perhaps more importantly, this work also

involved a substantial software effort. The ability to translate code into cir-

cuits was an early innovation of this system [30]. Much of this work influenced

researchers in custom microcode, and would be cited as the predecessor of later

reconfigurable logic based machines.

Shortly after this effort, research in cellular arrays began, but no sub-

stantial effort was made to build a programmable system using this technology.

In the mid-1980s, interest in large scale use of reconfigurable logic to build re-

configurable machines increased. It is likely that this interest was fueled by the

introduction of commercial reconfigurable logic devices from Xilinx [17, 133]

and others. These devices, however, were initially quite small, providing the

equivalent of only a few hundred logic gates. As the density of reconfigurable

devices increased, it became apparent to several independent groups of re-

searchers that complete systems based only on reconfigurable logic could be

15

successfully constructed.

By 1990, a small number of research projects were constructing recon-

figurable machines and reporting encouraging results. These early machines

included the work at the Paris Research Laboratory of the Digital Equipment

Corporation [9, 10, 113, 112], the Supercomputer Research Center [40, 41] and

the work at Kean at the University of Edinburgh [63, 65, 64].

By the mid-1990s, the number of hardware platforms based on recon-

figurable logic was growing rapidly. One count placed the number at approx-

imately 40 by the middle of 1994 [45]. A workshop dedicated to reconfig-

urable logic based machines was started in 1993 and appears to be increasing

in popularity [15, 16]. A European conference previously oriented toward pro-

grammable and reconfigurable devices has begun to attract a number of reports

on reconfigurable computing [95, 44, 96, 51].

Although a large number of systems have been designed and imple-

mented in a very short period, they tend to fall into four major categories.

Two relatively independent architectural parameters can be used to classify

the systems into these categories: RPU size and dedicated local memory.

The first parameter, the RPU size, is the amount of reconfigurable logic

used to implement the RPU. This value can be measured more or less by the

number of equivalent logic gates in the RPU. This will determine the complexity

of the functions which can be implemented by the RPU.

The second parameter is dedicated local memory. This is the memory

directly accessible to the RPU. The absence or presence of dedicated memory

will affect the system at several levels. Architecturally, dedicated memory im-

16

plies that the reconfigurable portion of the system may operate independently

from the host. From a software perspective, a programming model which sup-

ports an independent processor and memory space is indicated. Finally, at the

application level, dedicated memory will affect the types of algorithms that can

benefit from the use of reconfigurable processing.

Based on these two parameters, reconfigurable machines can be divided

into four major categories. These are Application Specific Architectures (ASA),

Reconfigurable Logic Coprocessors (RLC), Custom Instruction Set Architec-

tures (CISA) and Reconfigurable Supercomputers (RS). Table 2.1 shows the

four types of reconfigurable architectures and their RPU sizes and presence or

absence of dedicated local memory.

No Local Local
Memory Memory

Small RPU CISA RLC
Large RPU ASA RS

Table 2.1: An architectural classification of reconfigurable machines.

In this table, a small RPU is defined to be less than 105 equivalent gates

and a large RPU is defined to be greater 106 equivalent gates. This boundary

is somewhat arbitrary and leaves a “grey area” for machines between 105–106

equivalent gates. Machines which have RPUs whose gate count is somewhere

in this region may have features of two classes of machines.

17

2.2.2 Application Specific Architectures

The first class of reconfigurable systems are Application Specific Architectures

(ASA). These machines were some of the earliest to exploit the advantages of

reconfigurable logic. They have no dedicated memory and have relatively large

RPUs. These machines are primarily characterized by a very narrow area of

application.

One popular use of such application specific architectures is in the accel-

eration of logic simulation [126]. Here, reconfigurable logic is used to prototype

custom hardware. This approach has resulted in dramatic speedups over more

traditional software simulations. A good overview of this area can be found in

[99].

Another example of an application specific machine is GANGLION [21].

This machine was used to implement a fixed size three-layer neural network.

This system made use of reconfiguration to provide a dramatic speedup over

established software techniques. However, this hardware was only useful to

implement a single neural network configuration. Modifying the number of

neurons in the system was not possible.

While perhaps the earliest large-scale use of reconfigurable logic, these

machines function much like custom hardware. While they may take advantage

of reconfiguration to accomplish their tasks, they are typically used for a single

application. In this sense these machines are more closely related to traditional

fixed custom hardware than more general purpose reconfigurable machines.

18

2.2.3 Reconfigurable Logic Coprocessors

The second class of machines based on reconfigurable logic are called Recon-

figurable Logic Coprocessors (RLC). These machines are relatively small, with

only a few thousand equivalent gates in the RPU. They contain dedicated mem-

ory directly coupled to the RPU. Since the RPU is relatively small, the memory

on these systems is similarly limited. Typically on the order of 1 megabyte or

less is provided.

Figure 2.8 gives a high-level diagram of the RLC approach. Some ex-

amples of this approach to reconfigurable computing are the Algotronix 2x4

[3, 65], the AnyBoard system [125, 23], the TUT-CA processor [127] and the

BORG system [19].

CPU RPU

Memory Memory

Figure 2.8: The coprocessor approach.

Because of the relatively small RPU, these systems are used primarily

as small custom logic prototyping systems and are programmed using circuit

design tools and methodologies. They may be used effectively to perform tasks

of low computational complexity requiring high throughput. Digital signal

processing is one fertile area of application for this class of machine.

19

2.2.4 Custom Instruction Set Architectures

The third type of reconfigurable system is the Custom Instruction Set Architec-

tures, or CISA. These machines trace their roots to earlier custom microcode

machines. They attempt to increase performance by providing customized in-

structions typically unavailable in traditional instruction set architectures.

Figure 2.9 gives a diagram of this approach to reconfigurable computing.

These machines differ from reconfigurable logic coprocessors in that they are

typically more tightly coupled to the host CPU and have no dedicated memory.

Some examples of CISA machines are the PRISM systems [5, 7, 130], the flexible

processor [132], Spyder [60], the ArMen machine [108], the xputer [49, 50] and

the CM-2X [22].

CPU RPU

Memory

Figure 2.9: The CISA approach.

CISA machines typically offer a more traditional programming environ-

ment than other types of systems. This is primarily because the architecture is

based on the instruction set model of computation. This shared programming

model permits the host and RPU to cooperate closely. The function config-

ured into the RPU is viewed by the host as another instruction available to the

processor. This permits a simple interface for existing tools and languages. It

20

is likely that these systems will continue to be used for research in high level

language programming of reconfigurable machines.

While these machines tend to be easier to program, the use of the in-

struction set model of computing makes this approach more or less serial. While

the RPU can effectively implement complex bit operations not found in tradi-

tional architectures, it is not possible to further exploit parallelism within the

RPU via pipelining.

Additionally, scaling to larger RPUs permits more complex functions,

but the increase in the amount of logic will tend to slow the speed of the RPU.

Depending on the coupling to the host processor, this may require a decrease

in the system clock speed.

Except for special cases, the CISA approach to reconfigurable comput-

ing offers relatively modest gains in performance. It is interesting to note

that of the five machines cited above, three are multiprocessor systems. This

multiprocessor approach should further boost performance by exploiting data

parallelism, but at the cost of replicated hardware.

2.2.5 Reconfigurable Supercomputers

The final class of reconfigurable machines is Reconfigurable Supercomputers

(RS). These machines have large RPUs, on the order of one million equivalent

gates. They typically have large amounts of dedicated memory and a high

bandwidth link to a powerful host processor.

Architecturally, reconfigurable supercomputers resemble reconfigurable

logic coprocessors. The difference is primarily one of scale. Reconfigurable

21

supercomputers are several times larger (both in RPU and memory size) than

reconfigurable logic computers. This permits these machines to implement

larger and more complex algorithms.

Some examples of reconfigurable supercomputers are the PAM systems

[9, 10], the Splash systems [40, 41] and the Virtual Computer [18]. All of these

systems tend to be on the low end of the scale, with none having an RPU with

one million equivalent logic gates. These systems are perhaps better referred

to as reconfigurable mini-supercomputers. They are distinguished, however, by

their large memory and I/O bandwidth, as well as their fairly powerful host

machines.

Like the smaller reconfigurable logic coprocessors, these systems cur-

rently tend to be programmed using hardware design tools and methodologies.

Because of their larger size, however, they can be used to implement larger

and more complex algorithms, often involving more general arithmetic opera-

tions. Several applications have been implemented on these machines achieving

speeds surpassing that of large vector supercomputers.

2.3 Other Related Work

The use of reconfigurable logic to perform computation represents a somewhat

unique juncture in the development of computer systems. Work from several

diverse areas of technology have combined to produce this technology. Rather

than being a branch of any one particular area of research, reconfigurable sys-

tems represent a fusion of several established areas.

At the circuit level, the synthesis of logic functions is based on work

22

in the areas of circuit design and computer aided design tools. Automatic

circuit synthesis is particularly applicable. And because higher level arithmetic

functions are often used by these systems to perform computations, research

in techniques for constructing arithmetic circuits is a closely related area of

research.

At the system level, many techniques used by vector and parallel super-

computers are used by or directly influence the architecture of these machines.

In the approach studied here, software techniques for these high performance

systems is a significant component.

While reconfigurable systems can trace direct lineage to several different

areas of computing, some specific approaches will be employed in this work.

Rather than attempting to list these details here, they will be referenced along

the way, as various aspects of these systems are explored.

2.4 Overview of This Work

The work described in this dissertation proposes a technique for programming

fine grained reconfigurable machines using high level languages. This technique

is intended primarily for use with reconfigurable supercomputer class machines,

but may apply to other systems as well. Based on this approach, architectural

recommendations, both at the device and system level are made. From this

architecture and programming model, several algorithms are implemented and

simulated.

From these simulations performance estimates are made and compared

to other high performance systems. These results are then used to make sug-

23

gestions for further architectural refinements.

Chapter 3

Reconfiguration

With the commercial availability of relatively large reconfigurable logic devices

and the evolution of computer aided design tools, it has become feasible to build

fairly large and powerful systems based on reconfigurable logic. While it is clear

that large gains in performance can be achieved with this approach, little has

been reported on architectural issues concerning these systems. Unfortunately,

these machines appear on the surface to be sufficiently different from existing

approaches to computation that direct comparison to traditional architectures

is difficult and often confusing.

Performance

F
le

xi
bi

lit
y

Instruction
Set Arch.

Custom
Hardware

Reconfigurable
Architectures

Figure 3.1: The traditional tradeoff of flexibility and performance.

Figure 3.1 gives a general diagram of traditional approaches to compu-

tation and their relation to reconfigurable architectures. Until the recent large

scale use of reconfigurable logic to perform calculation, there was a generally

24

25

accepted tradeoff between flexibility and performance in computing systems.

In general, the more flexible a machine was, the simpler the programming, but

the lower the performance. At one extreme, instruction set architectures can

easily implement a wide variety of algorithms, but at only moderate levels of

performance. At the other extreme is custom logic, which typically performs

a single task very efficiently, but other tasks poorly or not at all. Between

are various domain specific architectures which tend to trade performance for

flexibility.

One parameter which is not explicit in this graph is system cost. Typi-

cally, cost is proportional to performance and inversely proportional to flexibil-

ity. With reconfigurable architectures, it is expected that costs will tend to be

similar to that of more general purpose hardware. The use of commodity re-

configurable logic devices with modest requirements in density and clock speed

should permit these relatively low system costs.

The use of reconfigurable logic appears to offer the flexibility of instruc-

tion set architectures with the potentially high performance of fully custom

hardware. This unique combination has led to difficulties in analyzing recon-

figurable machines. Performance comparisons to both custom hardware and to

instruction set machines can be found in the literature. While these compar-

isons are useful for benchmarking, they provide little insight into how perfor-

mance gains are achieved and what levels of performance can be expected for

other algorithms.

26

3.1 A Reconfigurable Model of Computing

On selected algorithms, the performance of reconfigurable machines approaches

that of custom logic. This level of performance is typically two to three orders

of magnitude greater than that of implementations on instruction set architec-

tures. For this reason, it is tempting to make performance comparisons to a

custom hardware reference.

However, it should be a foregone conclusion that any custom hardware

implementation of an algorithm can also be similarly implemented on a suitably

large reconfigurable machine. The custom hardware implementation may be

used to determine the maximum achievable performance for a given algorithm,

but this is only useful in the cases where a comparable custom hardware solution

exists.

Viewing reconfigurable systems as a form of custom logic does nothing

to aid in predicting performance for algorithms for which no custom hard-

ware reference platform exists. Neither is it clear that comparing a highly

programmable machine to a fixed one is appropriate. Despite the similarities

in performance, it appears that comparing reconfigurable machines to fixed

custom logic implementations of algorithms can only be useful in providing a

rough expectation of performance levels.

This ability to dynamically reconfigure hardware is sometimes viewed

as the unique feature of machines based on reconfigurable logic. However, for

any hardware to be used for more than a single purpose, some level of recon-

figurability is necessary. A traditional instruction set processor may be viewed

as a reconfigurable processor. At the heart of the system, the arithmetic and

27

logic unit, or ALU can be viewed as a reconfigurable processing unit, or RPU.

A dedicated path is provided to the ALU for rapid reconfiguration. Depending

on the data sent to this port, the ALU performs various different logical opera-

tions on the inputs. At a higher level, this reconfiguration data is viewed as the

operation codes which partially define the behavior of the system. Figure 3.2

shows and ALU with instruction operation codes being used to reconfigure the

ALU.

ALU*+&+ /

Reconfiguration
Data

Figure 3.2: A reconfigurable model of computing.

From this perspective, the traditional ALU is actually a specific class of

RPU. The ALU is characterized by:

• A dedicated port for reconfiguration data

• Few possible configurations

• Rapid but frequent reconfiguration

The number of bits used to configure a typical ALU is less than 10, with

8 being a representative number. This permits at most 28 unique configura-

tions. These configurations define the operations available to the machine.

ALU reconfiguration typically takes place on the order of once per clock

cycle. While the number of possible functions is limited, sequential combi-

nations of these operations permit a large number of useful functions to be

28

performed. While not particularly efficient for any single task, this approach

provides a fairly constant level of performance for a wide variety of algorithms.

The primary drawback to this scheme is the bandwidth consumed by constant

reconfiguration. Since this bandwidth is limited, operations must be performed

in a more or less serial manner. In spite of these limitations, the inherent

flexibility of this approach has made it an extremely successful approach to

computation.

By contrast, RPUs based on reconfigurable logic devices make large scale

use of reconfiguration. Instead of the roughly eight bits used to reconfigure a

traditional ALU, thousands of bits are used to reconfigure a typical RPU. This

very large number of bits permits a very large number of possible functions.

While providing increased functionality, the large number of bits which must

be written to the control port of the RPU will consume system bandwidth.

How this use of system bandwidth is managed will impact the efficiency of the

system.

3.2 Instruction Replacement

Based on the reconfigurable model of computation, all reconfigurable machines

can be viewed as coprocessors which implement custom instructions. A portion

of the increase in performance comes from replacing a sequence of instructions

normally executed on the host with a single complex instruction implemented

in the RPU.

Equation 3.1 shows a sequence of n functions f1, f2, f3, ... performed by

instructions in the host processor, producing a result y.

29

y = f1(f2(x1, f3(x2, x3)), ...) (3.1)

This sequence of functions may be replaced by a single complex function

F as shown in Equation 3.2. Neglecting all sources of overhead, this provides

an n-fold increase in performance over the host calculation of y.

y = F (x1, x2, ...xk) (3.2)

CISA reconfigurable machines use this principle to provide performance

increases of at most a factor of n. This assumes repeated use of the function

F programmed into the RPU, with no other sources of overhead.

While the tightly coupled CISA approach can provide this increase in

performance, the more loosely coupled RLC approach can not only replace

these instructions in the same manner, but the function F may operate on

data in dedicated memory. If there are no dependencies, the function F may

be pipelined, increasing the throughput. In general, the more complex the

function F , the more the function may be pipelined.

Finally, reconfigurable supercomputers have the same advantages as

RLC machines, but their larger RPU permits even more complex functions.

Rather than a small number of simple instructions, reconfigurable supercom-

puter class machines can provide this high level of throughput for larger se-

quences of instructions, including those using high level operations such as

multiplication. It is this ability to execute large numbers of high level opera-

tions that give these machines performance levels of existing supercomputers.

30

3.3 Reconfiguration Overhead

Unfortunately, there are some barriers to achieving these increases in perfor-

mance. The most significant barrier is the overhead of RPU reconfiguration.

Thousands of bits of reconfiguration data must be written to the RPU for each

new function to be implemented. How this use of RPU bandwidth is managed

will determine the effectiveness of the system.

A simple analysis may be performed to decide whether or not it is prof-

itable to implement a function F in the RPU of a system or whether it should

be left to the host CPU.

Consider the case where a sequence of N instructions is to be executed

M times, performing some processing function. In the instruction set architec-

ture of the CPU, assuming one instruction per cycle and a CPU cycle time of

tcpu, the total time of execution, Tcpu is given by Equation 3.3.

Tcpu = (N ∗ M ∗ tcpu) (3.3)

To perform the same calculation on the RPU, some time, Tr must ini-

tially be spent on reconfiguration. This configures the function F in the RPU,

replacing the sequence of N instructions with a single operation. If the RPU is

able to execute the function at a clock speed of trpu, the total time of execution,

Trpu is given by Equation 3.4.

Trpu = Tr + (M ∗ trpu) (3.4)

In order to profitably perform the function F on the RPU, the total time

31

of execution on the RPU, Trpu, must be less than the total time on execution

on the host CPU, Tcpu. The break-even point, when both are equal is given by

Equation 3.5.

M =
Tr

(N ∗ tcpu) − trpu

(3.5)

If a simplifying assumption is made that both the host CPU and the

RPU run at the same clock speed, Tcpu is equal to Trpu. The equation reduces

to Equation 3.6. Time has been removed from this version of the equation by

normalizing with respect to clock cycles. The total time of reconfiguration, Tr

is replaced by R, the number of reconfiguration cycles.

M =
R

N − 1
(3.6)

What Equation 3.6 states is that the number of times that the function

F must be executed on the RPU to break even is M . The greater the number

of reconfiguration cycles, R, the larger M must be to break even. Similarly,

the more instructions that are replaced, N , the fewer the number of times M

that the RPU function must be executed to break even.

An interesting point concerning this equation is that R and N are not

independent variables. Both in some form represent the complexity of the func-

tion being implemented. The number of bits necessary to specify the function

should bear some relation to the complexity of the function as expressed in

number of instructions replaced. The exact value of this relation is dependent

on the both the structure of the underlying reconfigurable logic devices as well

as the sort of instructions which are replaced.

32

One method for reducing this break even point is to decrease the total

time of reconfiguration, Tr. One method of accomplishing this is to provide

a higher bandwidth port for reconfiguration. Unfortunately, existing reconfig-

urable logic devices are not optimized for rapid reconfiguration. Reconfigura-

tion data ports are often very narrow. Bit serial implementations are common.

But even if the full bandwidth of a device were dedicated to reconfigu-

ration, the overhead would still be significant. If a reconfigurable logic device

is assumed to be implemented as a square circuit n units on a side, the I/O

bandwidth of the device may be assumed to be proportional to the perimeter of

the device, or O(4n). This assumes that all I/O occurs at the perimeter of the

device. It may also be assumed that the amount of data necessary to configure

the device is roughly proportional to the area of the device, or O(n2). This

gives an increasing gap in reconfiguration overhead as the size of the device

increases.

This reconfiguration overhead is one of the defining features of existing

reconfigurable systems. Since a large number of cycles must necessarily be

spent to configure the RPU, the function implemented in the RPU must be

used a larger number of times to amortize this overhead. Existing systems

are so slow to reconfigure that they are typically configured only once at the

beginning of execution and seldom, if ever, reconfigured. This has served to

limit the types of algorithms which can be successfully implemented on these

machines.

While the high cost of reconfiguration cannot be completely overcome,

it may be hidden. Reconfiguration may take place while the host executes a

33

portion of the algorithm not suitable for the RPU. This assumes that the host

is participating in the calculation and that reconfiguration will take little, if

any, of the host resources.

CPU RPU

Memory

Memory

RPU

Figure 3.3: An RPU with two banks.

Figure 3.3 presents a second approach. A “banked” RPU may be used.

Here, one bank may be reconfigured while the second is performing processing.

When the second bank begins processing, the first bank may be reconfigured.

If reconfiguration is not too frequent, this scheme can hide all of the overhead

of reconfiguration, at a cost of doubling the RPU hardware.

3.4 Amdahl’s Law

Another, perhaps more fundamental, barrier to performance is the inherent

limitation on speedup. Often referred to as Amdahl’s Law, this statement

defines the limit of the performance of a given algorithm on a given machine.

While usually stated in terms of multiprocessor machines, it is also applicable to

the use of any subsystem which is used to increase overall system performance.

This includes custom hardware and reconfigurable logic based machines.

Equation 3.7 gives the generalized version of the definition of speedup as

it applies to reconfigurable logic based systems. This equation states that the

34

speedup is equal to the unaccelerated execution time of a program, Tu, divided

by the accelerated execution time of the program, Ta.

Speedup = Tu/Ta (3.7)

In Equation 3.8, the accelerated version of the algorithm is broken down

into three major components, the time used for reconfiguration, Tr, the time

used executing code on the host machine, Th, and the time of execution on the

reconfigurable processor, Trpu. Equation 3.8 gives this expanded version of the

equation.

Speedup = Tu/(Th + Trpu + Tr) (3.8)

The quantities in the denominator give the three limitations on speedup.

Since it is possible to overlap both reconfiguration and the processing of data in

the RPU with execution of host code, Tr and Trpu can conceivably be zero. This

leaves Th as the only portion of the accelerated execution time which cannot

be reduced.

This portion of the code is analogous to the “serial” portion of the algo-

rithm in multiprocessor implementations of algorithms. Given the percentage

of time Th spent in this portion of the algorithm, the limit on acceleration pro-

vided by the reconfigurable hardware is 1/Th. If only ten percent of the time

is spent in execution on the host, a maximum speedup of 10 can be achieved

using the reconfigurable processing unit.

35

In order to make effective use of reconfigurable logic to perform process-

ing, the algorithms must make significant use of the RPU. Algorithms which

process data using the RPU only infrequently can expect diminished gains in

performance.

3.5 Algorithms

Currently, the types of algorithms implemented on reconfigurable systems are

quite limited. Due to the very slow reconfiguration of existing devices, it is dif-

ficult to achieve high levels of performance in algorithms which require frequent

reconfiguration. The majority of algorithms currently implemented configure

the RPU once at the beginning of execution and never reconfigure it. This

has led to the implementation of algorithms which have traditionally been well

suited to custom hardware implementations.

These implementations necessarily perform a single fixed function re-

peatedly. This has led to algorithms that can be categorized summarily as

signal and image processing. This is taken to include cellular automata, which

can be considered an image processing technique.

The second major limitation on existing machines is their size. The

small number of configurable logic gates in the RPU eliminates all but the

simplest bit-level algorithms from consideration. Once larger RPUs become

available, larger and more complex algorithms are likely to be implemented.

As with existing systems, larger reconfigurable machines will also have

to perform a large number of repeated operations to warrant their use. The

difference will be that it will be possible to perform high level arithmetic and

36

logical operations, not just simple bit level operations. Algorithms which per-

form large numbers of repeated high level operations can be currently found

executing on parallel and vector supercomputers. It is expected that these al-

gorithms, particularly those which operate on large amounts of data, can profit

from reconfigurable computing.

Chapter 4

The Software Architecture

Ideally, we would like to take existing programs written in popular program-

ming languages and execute them directly on a reconfigurable machine. Some

interesting work in this area has been performed for the PRISM system [6, 5]

and for SPLASH [42]. PRISM was able to compile small functions imple-

mented using a subset of the C programming language into reconfigurable

logic. This approach, while simplifying the software, showed only modest per-

formance gains. The SPLASH work involves a description of a data parallel

approach using reconfigurable SIMD hardware. No actual results on imple-

mentations of this technique have been reported. Other more theoretical work

has been performed by the Hardware Compilation Group at Oxford Univer-

sity [83, 85, 101, 84, 82]. Direct execution of existing languages such as C has

been shown to be difficult. Much of the problem appears to be the mapping of

constructs from an instruction set machine to a reconfigurable architecture.

4.1 An Arithmetic Calculation

Before attempting to provide full programming language support, we will per-

form a simple arithmetic calculation. From this base other supporting con-

structs will be added. Consider the function in Equation 4.1.

37

38

X =
(A + B) ∗ (C + D)

2
(4.1)

For the purposes of this example the variables can be assumed to be

integers. In reality, any data type or data representation may be used. A

simple method of executing this code fragment on a reconfigurable architecture

would be to reconfigure the RPU for each operation, and send the appropriate

values from memory to the RPU. The results can then be read at the output

port of the RPU. This leads to the following execution sequence:

1. Configure the RPU as an adder

2. Send A and B to the RPU and store the output in a temporary variable

3. Send C and D to the RPU and store the output in another temporary

variable (no reconfiguration necessary)

4. Configure the RPU as a multiplier

5. Send the two temporary variables to the RPU and store the output in

another temporary variable

6. Configure the RPU as a divide-by-two unit

7. Send the previous product to the RPU and read the output

In this mode of operation, we see that the RPU must be reconfigured

frequently. In fact, unless two identical operations happen to be performed in

sequence, the RPU must be reconfigured once per operation. This is undesir-

able because of the high RPU reconfiguration overhead. Since reconfiguration

39

is a costly operation, this approach will be inefficient and will probably offer

no advantage over traditional instruction set architectures. What is desirable

is some methodology which reduces the reconfiguration overhead.

4.2 Vector Processing

One method of reducing the reconfiguration overhead is to execute algorithms

in which operations are repeated frequently. In the example above, no reconfig-

uration was necessary between the two addition operations. Algorithms with

many such operations in a row would have an advantage on reconfigurable

hardware.

Fortunately, such repeated calculations do occur frequently. Looping

constructs in programs are often used to repeat an operation many times. Spe-

cial purpose coprocessors, usually called vector processors, have been designed

and built to accelerate the operations of these repeated operations. High-level

programming language support for these vector processors exists in varying

degrees.

In a programming language like C, vectors are defined as arrays of val-

ues, and the operations are performed within loops. Consider the C code in

Figure 4.1. This code fragment is used to perform the operation in Equation 4.1

on vectors of data. It is a simple matter to configure the RPU as an adder and

to process vectors a and b and store the result in a temporary variable, and

continue in a manner similar to that outlined for the scalar calculation.

Unfortunately, the code contains more than just arithmetic operators.

The looping and indexing constructs are features used by the instruction set ar-

40

int a[SIZE];

int b[SIZE];

int c[SIZE];

int d[SIZE];

int x[SIZE];

for (i=0; i<SIZE; i++)

x[i] = ((a[i] + b[i]) * (c[i] + d[i])) / 2;

Figure 4.1: C code to process vectors.

chitecture for addressing and sequencing control. Translating these constructs

directly to produce vector code for the reconfigurable processor may be difficult

or impossible. One approach is to perform the looping and indexing on the host

processor and the arithmetic operations on the reconfigurable machine. This,

however, would seem to offer little advantage to using the host processor to

perform all of the calculations.

Another approach is to remove the explicit sequencing and indexing

code. If we are performing a vector operation, these details are redundant.

The length of the vector is already known. The pairwise operation may also

be assumed.

The code fragment in Figure 4.2 illustrates the same vector addition

using this vector or data parallel style of programming. And all the information

necessary to process the vectors is readily available. Interestingly, this code is

simpler than the original C code. This approach to expressing parallelism has

recently gained popularity among users of large multiprocessors [12, 52, 54, 55,

110].

Based on this code fragment, the RPU may be configured once as an

41

int a[SIZE];

int b[SIZE];

int c[SIZE];

int d[SIZE];

int x[SIZE];

x = ((a + b) * (c + d)) / 2;

Figure 4.2: Vector C code to process vectors.

integer adder and each of the SIZE elements in the vectors may be added in

sequence. Afterwards, the vector multiply and division operations may be

performed in a similar manner. It is interesting to note that when processing

vectors in this way, one arithmetic operation is performed per clock cycle.

All of the other overhead associated with looping and address calculation is

eliminated. It is this reduction in overhead that makes this approach, as well

as that of more traditional vector processors, attractive.

4.3 Exploiting Temporal Parallelism

The previous example demonstrates that a reconfigurable machine can be used

to process vectors efficiently. Using this mode of operation, the system would

only require an RPU large enough to perform the most complicated operation

offered by the language. Simpler operations will result in idle hardware in the

RPU. One method of increasing both RPU utilization and overall performance

is to execute operations in parallel.

In the example calculation, note that the vector multiplication of the

two vector sums are immediately followed by the vector division by two. It

should be possible to perform these two operations in a single pass, exploiting

42

the temporal parallelism in this calculation.

Figure 4.3 shows a diagram of the functional units for the multiplication

and the division. In this situation, the RPU in the reconfigurable machine

would be configured as a multiplier feeding a divider.

*

/2

Figure 4.3: Chaining of functional units.

Performing multiple operations in this manner will increase the delay

through the circuit. One method of reducing this delay is to pipeline the circuit.

If latches are placed at the outputs of the two functional units, results can still

be produced at a rate of one per clock. Pipelining will, however, increase

the latency. In this case, it is not until the second clock cycle that a result is

produced. If the vectors being processed are longer than the number of pipeline

stages, the increased clock speed will compensate for the increased latency.

In addition to performing two operations in a single pass, there is an

added benefit to pipelining. When the operations are executed separately,

a temporary variable is required to store the intermediate result. When the

results are fed directly from the multiplier to the divide unit, this temporary

variable is no longer necessary. This technique can be viewed as a generalization

43

of chaining as found in Cray vector processors.

Several operations may be pipelined in this fashion. The depth of the

pipeline will be limited only by the algorithm being implemented. It may also

be useful to pipeline the individual functional units internally. For instance,

the multiplier unit may itself be pipelined. This results in a superpipeline which

produces a result once per cycle, with a very low cycle time. While the latency

will also be increased, it will be significant only if shorter vectors are processed.

4.4 Exploiting Spatial Parallelism

In addition to exploiting temporal parallelism through cascading of functional

units and pipelining, it may also be possible to exploit spatial parallelism by

performing independent calculations in parallel.

A B C D

+ +

Figure 4.4: Parallel functional units.

In the previous example, both addition operations may be performed

independently. Figure 4.4 demonstrates how the RPU could be configured to

produce these results in parallel.

44

4.5 A Systolic Dataflow Framework

If these two techniques are combined, both temporal and spatial parallelism

in the algorithm may be exploited. From the example discussed above, a cir-

cuit using both the cascaded pipelining of the two lower functions and the

superscalar style parallelism of the addition operations may be constructed.

Figure 4.5 shows the resulting circuit.

A B C D

+ +

*

/

2

A B C D

+ +

*

/2

Figure 4.5: A systolic dataflow circuit.

Since we are using data dependencies in the algorithm to structure the

interconnections between the functional units, we see that construction of a

data flow graph for the algorithm results in a description that is easily mapped

onto the hardware.

Since this circuit is also pipelined, all functional units have registered

outputs and operate from a common clock. This technique takes advantage of

all of the low level parallelism available in the algorithm.

45

4.6 The Scan Operator

Processing vectors is a useful operation and has been supported in several high

performance processors and coprocessors. Now we look at performing non-

vector operations on the data in vectors that have typically been left to slower

non-vector processing units.

Vectors may also be processed using a class of powerful operations called

parallel prefix or scan operations [72, 11, 75]. These operations were originally

introduced in the APL programming language, but are more widely known

through recent work in programming parallel architectures [54, 55].

The parallel prefix or scan operators are used as a bridge between scalar

and vector operations. This permits operations to be performed on the elements

within a vector. Consider the add-scan operation in Figure 4.6. Successive

elements of the vector A are added and accumulated to produce the result

vector.

A: [1, 4, 7, 2, 6, 0, 3]

add-scan(A): [1, 5, 12, 14, 20, 20, 23]

Figure 4.6: An example of the add-scan operation.

Other scan operations are also possible. An or-scan() function is used to

perform a bitwise OR of elements in a vector. This may be used, for instance,

to check if any error flags were set in some vector calculation. In general, any

standard boolean or arithmetic operation can be used in this manner.

46

To take advantage of this programming construct, a logic circuit imple-

menting the scan operation must be designed. If the add-scan parallel prefix

operation is considered, a circuit for this operation can be constructed.

The add-scan function may be viewed as an accumulation. An adder

circuit with the output fed back into one of the inputs may be used to implement

such an accumulator. Figure 4.7 shows a circuit which implements the add-scan

operation.

+ add−scan(A)
A

Figure 4.7: A circuit implementing add-scan().

It is a simple matter to extend this implementation of the add-scan

operation to other parallel prefix operations. The or-scan operation would

look identical to the add-scan operation in Figure 4.7 except that the functional

unit would perform a bitwise OR operation rather than addition. The feedback

connection would be the same.

4.7 An Example: Calculating ex

An example which illustrates the systolic dataflow framework and the use of

scan operators is series calculation. Consider the formula for the calculation of

the Taylor Series for the exponential ex in Equation 4.2.

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · (4.2)

47

On a conventional machine, this series would be calculated using looping

constructs and temporary variables. It is possible, however, to consider this a

vector calculation.

float denom[MAX]; /* Denominator */
float num[MAX]; /* Numerator */
float series[MAX]; /* Series terms */
float sum[MAX]; /* Series sum */
float result[MAX]; /* Final result */

denom = 1; /* [1, 1, 1, 1, ...] */
denom = add-scan(denom); /* [1, 2, 3, 4, ...] */
denom = mult-scan(denom); /* [1, 2, 6, 24, ...] */

/* [1!, 2!, 3!, ...] */

num = x; /* [x, x, x, x, ...] */
num = mult-scan(num); /* [x, x2, x3, ...] */

series = num / denom;
sum = add-scan(series); /* sum[MAX] = ex - 1 */
result = sum + 1.0; /* Add 1.0 to get ex */

Figure 4.8: A data parallel C code fragment for calculating ex.

A fragment of C code using scan operators to calculate the series for ex

is shown in Figure 4.8. The scan functions are used to first initialize vectors,

then to perform calculations.

Figure 4.9 shows the dataflow graph and the resulting circuit for this

algorithm. Note that the functional units for the scan operations are treated

in the same manner as the other arithmetic and logical functional units.

Since there are six functional units operating in parallel, the level of

48

(denom)
 1

(neum)
 x

ex
ex

1 x

+−scan

*−scan

*−scan

/

+−scan1.0

+

/

*

*

+

+

+

1.0

Figure 4.9: A circuit for calculating ex.

parallelism at the operator level is, in this case, five. This level of parallelism

is not, however, a function of the architecture. It is strictly a function of the

algorithm. If the algorithm requires a more complex series of calculations, the

level of parallelism will be higher. No matter how complex the calculation,

given a large enough RPU, one result is produced per clock cycle, once the

pipeline is filled.

4.8 Delay Balancing

When translating the dataflow graph into a pipelined circuit, some care must

be taken to guarantee that results arrive at their proper place in the circuit at

the proper time. Since the circuit is strictly feed forward, complicated pipeline

scheduling problems seen in other pipelined machines can be avoided [68, 58].

While this technique avoids the problems of recurrent pipelines, there

49

ex

1 x

/

*

*

+

+

+

1.0

Figure 4.10: Pipeline balancing via delay insertion.

is still the problem of delay balancing. Careful examination of the circuit in

Figure 4.9 shows that the results obtained will be incorrect. Assuming that

each functional unit represents a pipeline stage with latched outputs, it is clear

that the values arriving at the divide unit are not properly synchronized.

The vector elements on the left branch of the graph have passed through

two functional units, placing the first vector element at the input of the divide

unit at time (t + 2). By contrast, the vector elements being processed by the

right branch of the graph have only passed through one functional unit before

arriving at the divide unit. This places the first element of the input vector at

the divide unit at time (t + 1). The proper values will not be divided.

One method of synchronizing this circuit is to insert a delay into the

right branch of the circuit. This delay can be inserted at any point before the

divide unit. In the diagram in Figure 4.10, the delay is inserted between the

50

multiply functional unit and the divide unit. This will delay the numerator

calculation by one clock cycle. This places the first element of both vectors at

the divide unit at time (t + 2).

The delay stage can be thought of as the equivalent of a “no-op” in

an instruction set computer. Rather than slowing down the overall time of

calculation as the no-op would, the delay stage simply uses hardware resources

in the RPU. There is no performance penalty associated with insertion of delay

stages. Results are still produced at a rate of one per clock cycle.

The example in Figure 4.10 assumes that all functional units have unit

delay. It is possible that the functional units may be pipelined internally. This

does not, however, change the basic delay insertion technique. As long as the

delay in each branch of the dataflow graph is made to match, the algorithm

will be implemented correctly.

Well-known techniques exist for the delay balancing of such graphs.

Delay balancing algorithms specific to pipelined arithmetic units are discussed

by Hwang and Xu [59] and Gao [39]. While delay balancing is critical to the

correct operation of these circuits, subsequent circuit diagrams will not include

explicit delay balancing elements. This is done to simplify the presentation of

these diagrams.

4.9 Optimizations

The translation of the dataflow graph into a circuit is an effective method of

programming a reconfigurable logic based machine. While this will produce a

correct circuit from the description, it may be possible to perform optimizations

51

that can reduce the complexity of the circuit, the delay through the datapath,

or both.

The optimizations discussed here are based on popular existing opti-

mizations for instruction based architectures [100, 2]. The difference is that

optimizations performed on code sequences for instruction based architectures

attempt to reduce the number of cycles required to execute a program fragment.

The optimizations discussed for a reconfigurable architecture, however, reduce

the amount of hardware necessary to implement the particular algorithm.

The first optimization is strength reduction. Strength reduction refers

to the substitution of a complex operator with a simpler one. In Figure 4.11,

the complex operation of multiplication is replaced by the simpler addition

operation. Since a multiplier has a circuit area complexity of O(N2) and an

adder has a circuit area complexity of O(N), where N is the number of bits

being multiplied, this particular optimization can result in a savings of a factor

of N in hardware.

*

2 x

2x

+

2x

x

Figure 4.11: A strength reduction optimization.

Another optimization used by instruction set architectures that can be

52

applied to a reconfigurable architecture is common subexpression elimination.

This optimization eliminates redundant calculations by restructuring the equa-

tion. Consider the conversion performed in Equation 4.3.

2x2 + 6x ⇒ (2x)(x + 3) (4.3)

By rearranging the order of calculation, the number of operations is

reduced. Figure 4.12 shows the circuits generated by the original and the

optimized expression.

+

*

2x + 6x
2 (2x)(x + 3)

*

*

*

*

2 x 6

2 x 3

+

Figure 4.12: A common subexpression elimination optimization.

In this case the optimization has changed a circuit containing three mul-

tipliers and one adder into a circuit containing two multipliers and one adder.

One multiplier has been eliminated. In addition to reducing the hardware com-

plexity, the pipeline depth has also been reduced from two multipliers and one

adder in depth to two multipliers. This will reduce the latency of the pipeline.

53

The final optimization discussed here is constant optimization. In this

optimization, knowledge of a constant term in an expression is used to reduce

the complexity of the calculation.

In the example in Figure 4.13, a multiplication by the constant 3 is

replaced by a left shift operation (<<) and an addition. This reduces the

hardware complexity of the operation from one multiplier unit to one adder

unit and a shift operation. It should be noted that the shift operation may not

necessarily be a functional unit consuming hardware resources. It may simply

be the way in which the wires are routed to the adder unit. As such, the shift

operation may not add any further complexity to the circuit.

x

x

3

3x

*

<<

+

3x

Figure 4.13: Optimization using constants.

Other optimizations used by instruction set architectures may be applied

to reconfigurable architectures. It should be noted that optimizations based on

control flow, such as loop unrolling, have no analog in reconfigurable machines.

Only optimizations which reduce the complexity of a calculation are applicable.

Other lower level optimizations may also be applied to these circuits.

These types of optimizations are based on logic optimizations and are per-

54

formed at the gate level. These optimizations are not considered for two rea-

sons. First, the elimination of single gates is insignificant compared to the re-

ductions in complexity of the previous optimizations. Second, the effectiveness

of these low level optimizations will depend on the underlying reconfigurable

logic device architecture. Elimination of gates may not necessarily improve a

design which is mapped to devices with large grained CLBs, for instance.

4.10 The Programming Model

It has been demonstrated that sequences of arithmetic and logical operations

may be implemented on a reconfigurable architecture by translating the data

flow graph of the vector operations directly to a pipelined circuit. Providing full

programming language support from this point requires some further extension.

For the remainder of this work the syntax of the C language [66] will be used.

The only extension of the C syntax is the ability to perform vector operations

on arrays of data. Rather than indicating a pointer to memory, the array data

type will represent a vector of a given length. For those familiar with the

C++ language [27], this may be viewed as overloading arithmetic and logical

operators for vector data types.

This approach has three major advantages. First, it does not require

users to learn a new language or new language constructs. Second, it leverages

the large body of existing software, including compilers, debuggers and other

tools as well as applications.

Lastly, and perhaps most significantly, the explicit definition of vectors

greatly simplifies the compilation process as well as the interaction between

55

the host and the RPU. All code fragments which operate on vectors will be

executed on the RPU. All other code will be executed on the host. This simple

arrangement not only provides an effective method of partitioning the scalar

and the vector code, but also gives the user control over how the RPU will be

utilized.

This technique for compiling vector based data parallel code for reconfig-

urable hardware also simplifies other portions of the system. Most significantly,

the pipelining of the circuits permits the RPU to run at a single fixed clock

speed. In the case where circuits are synthesized in a more ad-hoc manner, the

delay through the RPU may vary substantially. No simple technique exists for

determining the maximum clock speed of the configured circuit. This approach

avoids this problem while providing a relatively high clock rate.

Finally, this approach is based on the use of high level macrocells for

arithmetic and logical operators. It is expected that these macrocells will be

created by hand and optimized for the particular underlying reconfigurable

logic devices which make up the RPU.

While traditional programming languages have data types which are

associated with some fixed data width, this is not necessary with reconfigurable

hardware. Where increments of eight bits in width are usually specified for

most values, reconfigurable logic permits arbitrary datapath widths. Some

languages, such as Ada permit specification of the width of the data types.

While not a necessity, the ability to specify the width of the data types and

their associated data paths would further increase the flexibility of the system.

In addition to permitting user specified datapath widths, the high level

56

language compiler may also be used to specify the widths of the internal data

paths to preserve accuracy.

Figure 4.14 shows an instance where two eight bit values are added,

producing a nine bit value. In this situation, the increase in the width of the

data path eliminates the possibility of an overflow. In other instances, such

as when performing a division, increasing the width of the data path may be

used to increase the accuracy of the result. The ability to vary the width of the

data path in this manner permits more accurate calculations without adversely

affecting the external bandwidth of the system.

A B

+

+

88

9

Figure 4.14: Preservation of accuracy.

4.11 Mixed Valued Striding

So far, a method for performing pairwise operations on vectors has been de-

scribed. While a common operation, there are many cases where elements

57

within a vector are accessed in other ways. In traditional programming lan-

guages, vector or array elements are accessed by performing some calculation

to produce an index value. This index value is then used as an offset into

the data. What is desirable is some method of accessing data within vectors

without resorting to this type of indexing technique.

One method which provides some deviation from the standard linear

incremental vector access is striding. Stone defines stride as the constant dif-

ference between successive addresses in a stream of data generated by a vector

access [118]. Using strides in this manner, it is possible to access every Nth

element in a vector. Additionally, special purpose hardware can be used to

accelerate vector striding.

But by defining stride as a difference between addresses, Stone unneces-

sarily restricts stride values to that of integers. While existing machines have

used this approach exclusively, it is proposed here that an extension to the

traditional implementation of striding using mixed rather than integer values

be used. This allows useful access patterns to the vector data to be produced.

In many cases, this technique can be used to produce the types of data streams

currently only achievable with indexing and scalar hardware.

The common software technique for creating address streams to access

arrays or vectors of data is to use a looping construct. The parameters of this

looping construct typically specify a starting index, an ending index and a step

value. These values are usually represented as integers and used to directly

index arrays or vectors of data.

In most programming languages, the values used by these looping con-

58

structs may be of any data type. But when these looping constructs are used

as array indices, they are most often integral. It is possible, however, to use

non-integral values in these looping constructs, so long as the final value used

as an index is an integer. If mixed or fixed point values are used in the looping

constructs, the final index can be converted into an integer by simply ignoring

the fractional portion.

From this software model, one additional parameter will be added. This

is the modulus value. This is an integral value which is used to limit the

magnitude of the index. Before an index is added to the starting address, its

modulus is taken. For a modulus of N , this remaps the index into the range 0

to N . The modulus is ostensibly used to eliminate illegal accesses, but it also

has other more powerful uses.

Rather than represent vector striding in the context of a control loop,

a function containing all of the necessary parameters will be used. Not only is

this a more concise representation, but it removes the notion of a loop, which

may or may not exist in the actual system being programmed. It also serves

to separate what is purely a memory access operation from other calculations

involving program data. The function takes as its input parameter a vector

and produces as its output a vector. The syntax is shown in Figure 4.15.

Vout = stride(Vin, start, strideval, length, modulus)

Figure 4.15: The syntax for the mixed valued stride operation.

Because of the wrap-around nature of the modulus, the end parameter

has been replaced by length. This specifies the number of elements in the

59

resultant vector, Vout. This is a simpler and more reliable termination condition,

and may be derived easily from the start, end and step looping paramenters in

the software looping construct.

For example, consider the vector A = {1, 4, 7} with a stride of 1/3 and a

length of N2, or 9. The resulting vector A′ contains the values {1, 1, 1, 4, 4, 4, 7, 7, 7}.
This data access pattern is commonly used in nested loops.

One of the most common uses for the traditional integral stride is to

access an array by columns when it has been stored in row-major form. For an

NxN array, this takes N vector operations of lengths N , while access by rows

requires only a single vector operation of stride 1 and length N2. By using a

stride of (N + 1/N) and a modulus of (N ∗N), the array may be referenced as

columns in a single vector access. Figure 4.16 shows a simple example of this

access pattern.

A = [1, 2, 3,
4, 5, 6,
7, 8, 9]

A′ = stride (A, 1.0, (N + 1/N), (N ∗ N), (N ∗ N))

A′ = [1, 4, 7,
2, 5, 8,
3, 6, 9]

Figure 4.16: Column access of row major data (N = 3).

The perfect shuffle is another data access pattern that would require two

vector accesses with integral striding. Using a mixed valued stride of ((N+1)/2)

and a modulus of N , a perfect shuffle access pattern on a vector of length N

60

can be performed in a single vector operation. In addition, the vector can be

restored to its original state with a stride access of (2 + 2/N)

Reversal of a vector can be achieved by using a start value of N and

a stride of -1. Because of the operation of the modulus, it is also possible to

reverse a vector using a starting value of N and a stride of (N − 1). If other

such cases are examined, it is clear that all access patterns can be reduced to

strides greater than or equal to 0 and less than N . This limitation in the range

of the stride is significant, because it can be used to limit the complexity of

special purpose striding hardware.

Table 4.1 gives some examples of striding values and the result produced.

While these data access patterns are some of the more popular, the flexibility

of this approach permits may other interesting patterns.

Start Stride Length Modulus Description

N −1 N N Reversal
N N − 1 N N Reversal

(N/2) 1 N N Butterfly
0 (N/2) + (1/2) N N Perfect Shuffle
0 2 + (N/2) N N Reverse Shuffle
0 N + (1/N) (N ∗ N) (N ∗ N) Matrix Transpose
0 1 (N ∗ N) (N ∗ N) N2 by row
0 (1/N) (N ∗ N) (N ∗ N) N2 by column

Table 4.1: Some useful striding parameters.

So far, the stride software construct outlined is not much more than a re-

casting of other data accessing techniques. While it does provide unique access

patterns, these could easily be mimicked using existing software structures.

The benefit to this approach is that the memory access patterns are separated

61

from the computation. This permits special purpose hardware to be used to

generate the data stream. Additionally, the vector nature of the problem is

explicitly specified, aiding compilers in generating efficient vector code. Figure

4.17 shows one possible implementation of the mixed valued striding hardware.

StrideStart
Address

address

+

mod

Modulus

+

index

address
(fractional)

Figure 4.17: The striding circuit.

In the stride circuit, the adders are simple arithmetic units. The mod-

ulus operator is, in the general case, more complex. In this situation, however,

a general purpose modulus operator is not necessary. Since this function is

used to re-map values back into the range of the vector, a simple comparator

and a subtracter can be used to provide the necessary functionality. When the

mixed valued address is incremented past the modulus value, the modulus value

is subtracted from the mixed valued address. This provides the necessary func-

tionality for a stride between 0 and N . Figure 4.18 shows one implementation

of the simplified modulus circuit.

Another concern when dealing with mixed value numbers is exact rep-

resentation. In the case of a reciprocal, only values of N which are an even

power of two may be exactly represented. Padding of vectors to these lengths

62

−

ModulusIndex

>

MUX

Figure 4.18: The modulo circuit.

is one alternative. Another is simply to have enough bits in the fractional

portion of the stride to guarantee the necessary accuracy. This will be appli-

cation dependent, but it is expected that a fixed point representation with a

fractional portion equal to roughly half the integral portion of the address will

be sufficient.

Mixed valued striding is a simple extension of the classic vector striding

technique. The use of mixed value, rather than integral values allows the concise

specification of complex reference patterns which produce longer uninterrupted

data streams.

The hardware implementation of this technique is only incrementally

more complex than traditional integral striding hardware. As a further simpli-

fication, this hardware has a direct mapping to the software construct.

It should be again noted that the use of a stride() function only defines

an access pattern to a vector. It is not necessary to physically move data, as

long as there is direct hardware support for the striding. This approach should

help to alleviate some of the flexibility lost in going from a scalar looping style

63

control structure to a vector approach. Most of the algorithms implemented in

later chapters will make use of this construct.

Chapter 5

The Microarchitecture

Historically, programmable and reconfigurable logic devices have been used to

simplify the hardware design process. While many high level functions are

available commercially in standard packages, some portion of the design must

usually be customized. This customization often involves small amounts of

interface circuitry sometimes referred to as “glue” logic. These circuits are

usually fairly unstructured and require the ability to arbitrarily interconnect

logic elements.

Because of the unstructured nature of these circuits, popular reconfig-

urable logic devices have usually been designed to efficiently implement these

types of circuits. While these commercially offered devices have been used for

experiments in reconfigurable computing, they are not necessarily well suited

for the types of circuits produced by a high level language approach of the type

introduced here.

The implementation of reconfigurable processors may be considered a

specific application area for reconfigurable logic. Because of the more specific

nature of the circuits used by a reconfigurable machine, it may be possible to

provide a more nearly optimal programmable logic device for this application

domain. The three major architectural parameters of a programmable logic

64

65

device, the cell granularity, the interconnect structure and the input/output

structure, will be defined with the goal of producing an architecture directed

toward pipelined arithmetic and logical circuits.

5.1 Existing Programmable Logic Architectures

Some previous efforts have proposed devices optimized for arithmetic circuits.

These include Labyrinth [36], the CAL [65], and TRIPTYCH [26]. While each

takes a slightly different approach, all have some common features. First,

all three favor local interconnections. TRIPTYCH adds some global channel

routing, but uses a predominately nearest neighbor interconnection scheme.

Curiously, this nearest neighbor style of interconnect was used exclusively in

nearly all of the early research in programmable logic [93, 114].

A second common feature is a smaller cell size. Where devices geared

toward random logic such as Xilinx [133] contain cells with as many as 9 inputs

and 3 outputs, the devices oriented toward arithmetic circuits opt for 2-3 inputs

and 1-3 outputs. Internally, however, the logical functions computed by the

cells typically use some subset of the inputs. All three calculate only a single

logic output. Other outputs are pass-throughs of input signals, or a fanning

out of the single logic output.

This common direction away from global programmable interconnection

networks toward local interconnect can be easily justified. Existing random

logic oriented programmable logic devices use as much as 75 per cent of their

silicon area to implement the programmable interconnection network. While

this is necessary for unstructured circuits, the more regularly structured arith-

66

metic and logic circuits of the RALU do not require this large overhead. By

moving to a nearest neighbor interconnection scheme, several times the number

of cells can be made available.

Some additional benefits also accrue from the use of fixed interconnects.

First, the fixed interconnects are faster. Programmable interconnects must

pass through one or more programmable routing switches. Each pass through

a routing switch reduces the maximum speed of the interconnection.

Problems with bus contention are also avoided. With programmable

interconnections, it may be possible for two outputs to drive the same line,

possibly damaging the device. Finally, fan-out is no longer an issue. With

programmable logic, several inputs can be connected to a single output. At

best this slows the speed of the circuit, at worst the circuit ceases to function

correctly.

5.2 The 3I/3O/1F Cell

Since the problem domain of the programmable logic architecture being defined

is calculation, the programmable logic cell should be well suited to produce

circuits for common arithmetic and logical operations. The architecture must

also support the interconnection of these operators. A three input, three output

cell with one bit of feedback (3I/3O/1F) has been selected as the basis for the

architecture. This granularity was chosen for practical reasons. The three

inputs and three outputs can be used to implement a full adder, which is a

basic building block for adders and multipliers. Using full adders, these circuits

can be constructed using only nearest neighbor interconnections. Second, data

67

can flow to the left, right and downward. A smaller cell would restrict the

flow of data unnecessarily. Finally, the six connections indicates a hexagonal

structure. This permits dense packing of cells in the array.

LUT

Figure 5.1: A 3I/3O/1F cell.

In addition to the external inputs and outputs, a single feedback input

is provided. This data path is important for state machine circuits as well as

parallel prefix or “scan” circuits. Finally, all outputs of the cell are registered

and latched by a common clock signal.

This cell is currently described as a Look Up Table (LUT) containing

four inputs and three outputs. The exact circuit implementation of this cell is

not important, but for now it may be considered a 48 bit static RAM. Other

more efficient implementations may be possible.

5.3 The Hexagonal Array

The three inputs and three outputs of the cell described in the previous section

immediately indicate a hexagonal interconnection array. Figure 5.2 shows this

interconnection structure. The array is strictly feed-forward, with inputs at

the top of the array and outputs at the bottom. The center input of each cell

at the top of the array is used as a device input. Similarly, the center output

68

of each cell in the bottom row of the array is used as a device output. The

other cell inputs and outputs around the array perimeter are not used. These

perimeter inputs are assumed to have a logic value of zero.

Figure 5.2: The cellular array.

It is also possible to provide I/O connections for signals on the left and

right edges of the array. This will permit multi-device expansion of the array

in width, as well as in depth. Current indications are that such expansion of

the width of the array may prove to be unnecessary. Typical algorithms appear

to favor narrow, but fairly deep arrays. Additionally, it is expected that the

large number of cells in the array will preclude providing I/O access to all cells

along the perimeter.

The hexagonal structure of the array also introduces some timing issues.

Data traveling downward in the array proceeds at twice the rate of data travel-

ing diagonally. To remedy this situation, a two-phased clocking scheme is used.

Alternate levels within rows of cells in the array are clocked on alternate phases

of a global clock. This causes data to flow at the same rate both downward

and diagonally. This scheme permits the pipelining of circuits no matter what

the path data takes through the array.

69

5.4 Some Example Circuits

A hexagonal array of 3I/3O/1F cells is proposed as a medium for the con-

struction of arithmetic and logic circuits. In this section, some commonly used

high-level arithmetic and logic circuits are implemented and discussed. Since

these circuits are intended to be used as macrocells to construct high-level

algorithms, some restrictions are placed on their design.

First, all macrocells are rectangular. All inputs must enter the macrocell

at the top and all outputs must exit at the bottom. While this may potentially

increase the number of cells as compared to arbitrarily shaped macrocells, a

rectangular shape will simplify the placement and interconnection of the macro-

cells.

The second restriction is that data must enter and exit the macrocells

as buses, not individual bits. Again, since these macrocells are to be cascaded

and interconnected to form more complex circuits, it may be expected that

data will arrive grouped in buses. This will tend to increase the number of

cells used to transfer data, but will give a more realistic estimate of the size of

the circuits produced.

Another restriction on the design of the macrocell circuits is the location

of the inputs and outputs. All circuit inputs will use the center input signal

on the cells in the upper row of the macrocell. All outputs will be similarly

produced by the center outputs of the bottom row of cells. This is in a fashion

similar to the restrictions for physical input and output of data in the device.

Again, this may serve to increase the number of cells necessary to implement a

given function, but the standardization will permit simpler interconnection of

70

the macrocells.

The final requirement is that the macrocell constructed must be easily

extended to N bits of accuracy. While this requirement is somewhat vague, in

spirit it is intended to eliminate special circuit optimizations which may be only

narrowly applicable. This will allow simpler construction of new macrocells,

whether manually or automatically.

5.4.1 Boolean Calculations

A simple, but important operation is a bitwise boolean operation. Figure 5.3

shows one implementation of a 4-bit AND operation. Note that the majority

of the cells are used to interleave the data from the two 4-bit buses. Only four

cells are actually used to provide the ANDing functionality.

B3 B2 B1 B0 A3 A2 A1 A0

&

(B3&A3) (B2&A2) (B1&A1) (B0&A0)

&&&

Figure 5.3: A 4 bit AND implementation.

While the majority of the cells in this circuit are used to route data to

their proper location, this macrocell serves as an example of how this archi-

tecture makes explicit the cost of data movement. In architectures containing

programmable interconnections, the use of these resources is usually not ex-

plicit. While cell utilization is usually measured, routing is typically “free”.

71

Unfortunately, there is always cost in silicon area on the device when routing

signals. This architecture quantifies and makes explicit the cost of data routing.

5.4.2 An Adder Circuit

In a fashion similar to the boolean circuit in Figure 5.3, a 4-bit adder macrocell

is constructed in Figure 5.4. Unlike the boolean implementation, the data

dependency of the carry bits produce the diagonal shape of the adder logic.

Again, most of the cells are used to transport, rather than process, the data.

+

+

+

+

B3 B2 B1 B0 A3 A2 A1 A0

S3 S2 S1 S0

Figure 5.4: A 4 bit adder implementation.

This macrocell represents the implementation of a classic ripple-carry

adder circuit. More sophisticated implementations with various tradeoffs of

size and latency may also be constructed. Experimentation with other adder

circuits, however, indicates that the ripple-carry approach may be superior

for this architecture. Other adders depend on extra logic and interconnect to

increase the speed at which the carry signal is propagated. Because of the

72

structure of the array, the movement of data in all directions is quantized. N

steps are always necessary to propagate data across N cells. There is no simple

method for communicating the carry information across N cells in less than N

steps.

5.4.3 A Multiplier Circuit

The 2-bit multiplier circuit in Figure 5.5 shows a more complex macrocell. Its

construction is based on 2x2 supercells. A more compact representation is not

possible, primarily because of the need to propagate both data and carries

downward and to the left.

B1 B0 A1 A0

+

P0P1

&

&

&

&

++

+

+

P2P3

Figure 5.5: A 2 bit multiplier implementation.

This implementation is based on the summation of all possible product

73

terms AiBj . These are produced by the and cells (&), while the full adders (+)

compute the sums. Sums are propagated downward. This implementation is

similar to standard array multipliers [86].

One feature of note is that the inputs and outputs of the macrocell

are spaced twice as far apart as the previous macrocells. This may result in

extra cells being used to connect this macrocell to narrower macrocells such as

adders. Connection to other double-wide macrocells such as other multipliers,

however, incurs no penalty.

A final notable feature of this macrocell is the natural buses that form

the inputs. An interleaving of buses as seen in previous macrocells is not

necessary.

5.4.4 Scan Circuits

The feedback connection in the cells is used to implement scan operators. Fig-

ure 5.6 gives an implementation of an add-scan circuit. Here, input values are

accumulated by the adder. The structure of the macrocell is similar to the

adder in Fig. 5.4, except that there is only a single input and a single output.

The use of the feedback connection is indicated in the figure.

It is somewhat surprising that this relatively complex operation can be

implemented with such economy. The fact that only a single input is used

reduces the data communication cost and dramatically reduces the number of

cells necessary to implement the function.

Similarly, a boolean scan operation, and-scan is shown in Fig. 5.7. Here,

the boolean function is implemented in a very efficient manner. Since there is

74

+

+

+

+

A0A1A2A3

add−scan(A)

Figure 5.6: A 4 bit add-scan implementation.

only a single input and output and each bit is calculated independently, no

extra cells are used to route data.

A0A1A2A3

and−scan(A)

&

&

&

&

Figure 5.7: A 4 bit and-scan implementation.

5.5 Circuit Complexity

Table 5.1 gives the circuit complexity as the number of cells and latency in full

clock cycles. Note that all circuits except the boolean scan require O(N2) cells

and are O(N) latency.

Using these measures of complexity, it is possible to estimate the number

75

Circuit Cells Latency

Boolean N2 + 1.5N N/2 + 1
Adder 2N2 N
Add-scan N2/2 N/2
Multiply 12N2 − 3N 3N
Boolean scan N 1

Table 5.1: Complexity of the arithmetic circuits.

of cells necessary to implement a given high-level algorithm. Additional cells

may be necessary to act as buses to move data to the desired functional unit.

The exact count of the number of cells necessary will not be known until the

compilation process for a given algorithm is complete.

This use of macrocells to implement algorithms greatly reduces the com-

plexity of the placement and routing problem. First, since there is a pre-defined

flow of data from the top of the array to the bottom, placement is no longer an

issue. Macrocells are placed from the top of the array downward in the order in

which the operations are performed. Routing in simply interconnection of the

outputs of one macrocell to the input of another. This is often accomplished

by simple abutment.

This scheme permits a higher level approach to algorithm synthesis.

By relying on a library of high-level arithmetic and logical operators, many of

the issues of concern to more general logic synthesis are avoided. Placement

of macrocells and routing of interconnections is greatly simplified. Addition-

ally, the synchronous methodology avoids timing issues usually associated with

general purpose circuit synthesis.

76

Experience with algorithm compilation indicates that the array should

be relatively narrow, but deep. The width of the array should be at least 2N ,

where N is the width of the input data operands. This permits two N -bit

vectors as input, with either two N -bit vectors, or a single double accuracy

2N -bit vector as the result.

The depth of the array depends on the complexity of the algorithm.

Simple algorithms have fewer operations, and a shorter cascade of macrocells.

More complex algorithms tend to use deeper arrays. Since the processing unit

may consist of several devices chained with one output feeding another’s input,

expansion is fairly straight forward. Of course, both wider and deeper arrays

may be emulated on a smaller reconfigurable processing units by performing

the calculation in phases. Partial result vectors are calculated; the RALU is

reconfigured; and further calculation performed on the partial results. This

process proceeds until the final desired result is achieved.

Chapter 6

The System Architecture

The architectural model of the reconfigurable machine used in this study con-

sists of three major components, the host machine, the Reconfigurable Pro-

cessing Unit, or RPU and the memory system. Figure 6.1 shows these system

components and their relation.

Memory RPU

Host

Figure 6.1: The system architecture.

6.1 The Host Machine

The host machine is responsible for all input and output to the reconfigurable

hardware. This includes the configuration of the RPU as well as the loading

of data and the unloading of results from the memory system. It is expected

77

78

that the host machine will also run the development tools used to program the

reconfigurable hardware.

In addition to these functions, the host machine will also provide the

necessary control for the reconfigurable hardware. It will coordinate reconfig-

uration and processing. Some algorithms may also contain computations that

are ill suited to the reconfigurable hardware. Where appropriate, the host ma-

chine will perform selected portions of the algorithms in conjunction with the

reconfigurable hardware.

Since it is expected that the reconfigurable hardware will operate at

supercomputer levels of performance, it is necessary that the host portion of

the system be sufficiently powerful. It should provide the necessary bandwidth

to the reconfigurable processor for both I/O and reconfiguration. Since it is

possible that the host will participate in the execution of the algorithms, its

performance should also be high enough to provide a suitably balanced system.

6.2 The Reconfigurable Processing Unit

The RPU is a collection of reconfigurable logic devices. While any reconfig-

urable logic device capable of implementing arbitrary digital circuits may be

used for the RPU, it is assumed that the 3I/3O/1F device architecture discussed

previously will be used to construct the RPU. This architecture is able to eas-

ily implement high level arithmetic and logical functions like those commonly

found in high level languages. This capability will simplify the translation

process as well as simplifying the analysis of the configured circuits.

It is also assumed that the RPU is large enough to completely implement

79

each of the algorithms being studied. Rather than fix an arbitrary size and

geometry to the RPU, the results taken from the simulation of real algorithms

will be used as a guide to determine these design parameters.

Finally, it is assumed that a sufficient number of ports to and from the

memory system will permit data to be available as it is needed. As with the

size and geometry of the RPU, simulation results from selected algorithms will

be used to estimate suitable values for RPU bandwidth.

6.3 The Memory System

The memory dedicated to the RPU is assumed to be large enough to hold all of

the data used by the algorithm. It should also be able to deliver all of the input

data and store all of the results as required by the algorithm. A reasonable,

but modest, clock speed of 50 MHz has been assumed for the system. Since the

algorithms will generally be vectorizable, the hardware may take advantage of

this fact.

In traditional processors, cache memories are one technique used to

provide a faster primary store for data. However, caches are designed based on

locality of reference principles. That is, data used once are likely to be used

again and data near recently used data are also likely to come up for use.

These principles were derived from code traces on very long executions

of older codes written specially for instruction set machines. These data access

patterns are substantially different for vector architectures. The absence of

caches in modern vector supercomputers indicate that they are not an effective

means for increasing the performance of vector applications [118].

80

The dedicated memory unit is also expected to directly provide input

data and store output results from the RPU on each cycle. This roughly

corresponds to memory to memory style operations in instruction set machines.

While these types of operations were supported by early vector supercomputers

such as the Control Data and Burroughs machines, as well as smaller non-

vector instruction set machines, they appear to have have fallen out of favor.

Both vector and scalar instruction set architectures today opt for operations

involving processor registers. All memory accesses are made explicit with load

and store operations.

Caches as well as processor registers can be used advantageously only

when data are reused frequently. This applies to both scalar and vector regis-

ters. In instruction set architectures, where operations are performed serially,

the intermediate results are stored in registers so that they can be used in later

stages of the calculation.

In a reconfigurable logic based machine, however, these stages of execu-

tion are performed in parallel in a single pass. It is unlikely and undesirable that

the same input data be sent to the RPU more than once. This approach may

be viewed as a generalization of functional unit chaining in Cray vector units.

Chaining permits the results of one vector computation to be forwarded di-

rectly to the input of another functional unit. This permits multiple functional

units to operate in parallel and eliminates the overhead of storing intermediate

results in either registers or memory.

Static architectures such as the Cray provide some small, fixed number

of functional units which may be utilized in this manner. A reconfigurable

81

machine may configure an arbitrary number of functional units in this man-

ner. The number of operations performed in parallel is limited only by the

parallelism available in the algorithm and by the physical size of the RPU. It is

this internal forwarding of partial results that should permit the gains in per-

formance that will allow reconfigurable logic based machines to compete with

supercomputers.

While the memory system will not employ multi-level memory tech-

niques such as caching and registers, other techniques may be used to improve

memory performance. First, since the memory system is expected to be used

to provide vector access to data, techniques such as memory interleaving are

likely to provide improved memory system performance. Also, since the system

is expected to make use of the mixed valued striding construct, hardware to

implement this function should be part of the memory system.

Finally, the memory system should be able to read N data values and

pass them to the RPU inputs as well as store M output results from the RPU

per cycle. Each of these M × N data ports will contain hardware to perform

mixed valued striding. The number and width of these data ports is one of the

primary design parameters in the system. In many cases, the performance of

the system will depend directly on the ability to provide the necessary memory

bandwidth to the RPU. As with the RPU, these design parameters will not be

specified at this time. Analysis of selected algorithms will indicate the general

range of suitable values for these design parameters.

Chapter 7

Applications

Several algorithms have been selected for implementation and simulation for

this reconfigurable machine. These algorithms have been selected as typical of

those execution of existing parallel and vector supercomputers.

The first five algorithms selected are:

• Cellular Automata

• String Matching

• The Mandelbrot Set

• A Neural Network

• The Fourier Transform

In addition to these high level algorithms, selected portions of the Liv-

ermore FORTRAN Kernel (LFK) benchmark are also implemented and simu-

lated. These kernels provide the means to study algorithmic structures, par-

ticularly those which cause difficulties on existing supercomputers.

Each of these algorithms is simulated directly from their high level lan-

guage implementation. These simulations are used primarily to verify accuracy

82

83

of the algorithms as they are implemented. From these verified algorithms, cir-

cuits based on the dataflow graph of the vector portion of the algorithms are

extracted. Based on these circuits, performance estimates are made.

7.1 Cellular Automata

The cellular automata model of computation was originally developed by John

von Neuman and Stanislaw Ulam. This model specifies a number of cells which

exist in some typically small number of states. Cells transition between states

based on the state of their neighbors. This highly parallel approach to com-

putation has found many uses, ranging from random number generation to

physical modeling and image processing [48, 121].

While an elegant computational model, cellular automata implementa-

tions can perform poorly on traditional processors. The regular structure and

inherent parallelism of cellular automata, however, make it a prime candidate

for data parallel implementation, and execution on a reconfigurable machine.

This section begins with a description and implementation of a simple

linear cellular automata system. This is expanded to a two-dimensional ar-

ray. Popular image processing applications based on this model are presented.

Finally, a performance assessment is done.

7.1.1 Linear Cellular Automata

The linear cellular automata system consists of a single linear array of cells,

which interact with neighboring cells. In this example, the cells can be in one

of two states, either zero or one. Each cell interacts directly with only its two

84

nearest neighbors. In this example, the interaction is the Exclusive-OR’ing of

the state of the cell with the states of its two neighbors. Because the operation

is repeated for each element in the array, a simple data parallel solution can be

formed.

Figure 7.1 gives the data parallel implementation for the algorithm. A

single vector A is used to produce the resultant vector Out. The neighboring

values are generated by using the stride() function to produce two vectors with

the elements shifted by one and two, respectively.

A1 = stride(A, 1, 1, N, N);

A2 = stride(A1, 1, 1, N, N);

Out = A ^ A1 ^ A2;

Figure 7.1: The data parallel code for the linear cellular automata.

Figure 7.2 shows the results of several iterations through this procedure.

Each line in the image represents one pass through the algorithm. The out-

put vector Out is then assigned to the input vector A and re-processed. The

characteristic inverted triangle pattern of this algorithm is clearly visible.

The circuit extracted from this code is given in Figure 7.3. While other

multi-state automata are possible, this example uses a simple two state cell.

This makes all data in the circuit implementable using single bit values.

What is significant in this example is the structure of the circuit. A

single vector is input, a single vector is output, and nearest neighbor operations

are performed. Extensions to larger number of neighbors is accomplished by

adding more delay stages. This can increase the complexity of the calculation

85

Figure 7.2: Output of the linear cellular automata implementation.

^

A

^

Out

Figure 7.3: The linear cellular automata circuit.

86

without affecting the throughput.

Note that the stride() functions in the code have been used to produce

the delta delay elements, rather than external memory references. This opti-

mization reproduces the shifted version of the vector indicated by the stride()

function. The addition of the delta functional units greatly reduces bandwidth

while only marginally increasing circuit complexity. This operation is so com-

mon that a special function of the form delta(X, N) may be used in place of

the stride(). This provides the same functionality while simplifying the code.

It also may be used to provide a “hint” to the software that a delta element is

the desired implementation.

7.1.2 Conway’s Life

The one dimensional linear cellular automata system can be extended easily to

two dimensions. In this two dimensional version, a cell is surrounded by eight

neighbors. While operations involving neighbors not directly adjacent to the

cell are possible, they will not be discussed here.

Perhaps the most popular cellular automata implementation for a two

dimensional grid is Conway’s game of Life. This early cellular automata sim-

ulation is based loosely on a model of biological cell growth. Like the linear

cellular automata example, cells can be set to one of two states, “living” (1) or

“dead” (0). A cell is “born” if there are exactly three living neighbors. If there

are two living neighbors, the cell retains its present state. For all other values

the cell dies, presumably from either starvation or overcrowding.

This simple set of rules can produce very complex patterns. These

87

patterns have been shown to be capable of, among other things, performing

general purpose computation. Poundstone provides a popular, but thorough,

examination of Conway’s life, as well as other related topics [105].

/* B starts in 2nd row */

B = stride(A, width, 1.0, (width*height), (width*height));

/* C starts in 3rd row */

C = stride(A, (2*width), 1.0, (width*height), (width*height));

A1 = delta(A, 1); /* 3 cells across top row */

A2 = delta(A1, 1);

B1 = delta(B, 1); /* 3 cells across 2nd row */

B2 = delta(B1, 1);

C1 = delta(C, 1); /* 3 cells across 3rd row */

C2 = delta(C1, 1);

/* Add all but center cell */

Sum = (A + A1 + A2) + (B + B2) + (C + C1 + C2);

/* Apply Conway rules */

Out = (Sum == 3) || ((Sum == 2) && (B1 == 1));

Figure 7.4: The data parallel code for life.

The data parallel code for this algorithm is shown in Figure 7.4. This

code is an extension of the linear cellular automata implementation. Note that

the simpler delta() notation is used in place of the stride() function in several

places. A single vector A of length (n × m) is used to represent the state of

the cells. While this vector is a linear array of values, it can be viewed as m

concatenated vectors of length n, thus representing a two dimensional array.

A second vector B is generated directly from A. This vector is offset by

width and represents data in the second row of the 3x3 neighborhood. It should

88

be emphasized that although B is defined as a vector variable, it only defines

a method for accessing the data in vector A. It is not necessary to allocate

storage for B, nor is it necessary to copy values from A into B. In a similar

fashion, a third vector C is defined. This vector contains the data in A offset

by (2∗width) and provides the third row of the neighborhood.

Now that the three rows in the neighborhood are defined by A, B and C,

the individual elements of the neighborhood must be specified. As with linear

cellular automata, two delta() functions are used by each row to produce the

neighboring cells. These delta() functions produce the vectors A1, A2, B1, B2,

C1 and C2. These vectors, along with A, B and C represent the nine values in

the three by three neighborhood.

Once this effort has been made to define the vectors for the calculation,

the rest is a straight forward implementation of Conway’s rules. In the data

parallel code, B1 represents the center cell in the neighborhood. The other

vectors represent the neighboring cells. To calculate the new value of the B1

cell, all of the other vectors are summed. If the sum is exactly three, the cell

is set to living. Or if there are two living neighbors and the cell is currently

alive, the cell remains living.

The result is written to the vector Out. The data parallel nature of

the algorithm permits the operation to be defined using vector values just

as if it were being defined for a single scalar calculation. This data parallel

approach produces code which is in many ways simpler than comparable serial

implementations.

The circuit extracted from this data parallel code is shown in Figure 7.5.

89

Note the similarities to the circuit for the one dimensional case in Figure 7.3.

The circuit resembles three of the linear cellular automata circuits operating

in parallel, performing additions rather than Exclusive-OR operations. The

results of these sums are further processed to produce the single output.

CA

==

Out

B

==

&&

| |

+

+

+ +

+

+

+

23

==

1

Figure 7.5: The extracted circuit for life.

Also note that despite all input and output values being boolean, multi-

bit arithmetic operations are used to sum the elements in the neighborhood.

The equality operators (==) are used to compare the multi-bit sum value to

90

constants to produce a boolean values. These outputs are further processed by

other boolean operators to produce the result. In most cases the output Out

will serve as the input vector A for subsequent processing.

Figure 7.6 shows the evolution of a simple five cell block known infor-

mally as the R-pentomino. This structure is known to produce a large variety

of patterns in Conway’s life. It is also known to continue to produce unique

patterns for several hundred iterations before converging on a fixed pattern.

t = 0 t = 1 t = 2

t = 10 t = 15

Figure 7.6: The evolution of a simple pattern in life.

At t = 0, the original R-pentomino is shown. After one iteration, at

time t = 1, the r-pentomino takes on a hooked shape. At time t = 3, this

changes to a closed oval object. The shape continues to grow, with the results

at times t = 10 and t = 15 displayed in the figure. The object eventually splits

into several pieces, finally producing more than 20 stable objects.

91

7.1.3 Image Processing

A simple extension of Conway’s life is the basis for several popular digital image

processing techniques. By performing operations on the pixels in a digitized

image in a manner similar to life, useful and interesting functions may be

performed.

As with Conway’s life, these image processing techniques use the values

of the neighboring cells or in this case, pixels, to perform the processing. Like

the other cellular automata, these operations may be performed independently

in parallel.

In these examples, all of the images are 256x256 pixels, with each pixel

containing an integer value from zero to 255. These values are displayed as

a standard greyscale. This leads to a cellular automata grid that is 256x256

with each cell assuming one of a possible 256 states. Unlike the previous exam-

ples, the operations performed on these cells will require at least eight bits of

accuracy. Again, all neighborhoods are 3x3 pixels. Larger neighborhoods are

possible, but they are less common and are not discussed here.

All of the image processing operations are performed by multiplying each

value in the 3x3 cell by some fixed value, summing the results and dividing by

some fixed quantity. The nine values which are used to scale the pixels are

often referred to collectively as a spatial mask. The quantities are usually

displayed as a 3x3 array representing the relative pixels on which they will

operate. Depending on the values in the spatial mask, various image processing

functions are performed.

Figure 7.7 gives four popular masks which will be used in subsequent

92

examples. Each performs a useful image processing function. The first mask

(a) contains all ones and is used for image smoothing or blurring. The final

result from this kernel should be divided by nine. An alternative representation

of this kernel is one with all cells containing the fraction 1/9. The eliminates the

need for the final scaling, but requires the representation of fractional values.

Rather than use a fractional representation, all mask values are specified as

integers. If necessary, a final scaling is performed. This scaling is typically

accomplished by dividing the output by the constant sum of the nine mask

values.

The second and third masks are known as Sobel edge detectors. These

provide a gradient or first derivative operation which enhances changes in pixel

values. Collectively, this tends to bring out “edges” in an image. The mask in

(b) preferentially selects horizontal edges, while the mask in (c) selects vertical

edges.

Where the (b) and (c) masks provide something of a first derivative,

detecting edges, the last mask (d) performs a second derivative. This mask

is often referred to as a Laplacian. Gonzalez and Wintz [43] contains other

masks, as well as a discussion of this and other image processing techniques.

The data parallel code for making use of these masks is shown in Fig-

ure 7.8. This code is very similar to the two dimensional cellular automata

implementation of Conway’s life. In fact, the generation of the nine cell neigh-

borhood vectors is identical. For this reason it is not be repeated here. The

code listing begins after the A, B and C vectors have been defined.

In this code fragment, the values in the mask are represented by the

93

1 1 1
1 1 1
1 1 1

-1 -2 -1
0 0 0
1 2 1

(a) (b)

-1 0 1
-2 0 2
-1 0 1

0 1 0
1 -4 1
0 1 0

(c) (d)

Figure 7.7: Some 3 x 3 image processing masks.

Out = ((A * m1) + (A1 * m2) + (A2 * m3) +

(B * m4) + (B1 * m5) + (B2 * m6) +

(C * m7) + (C1 * m8) + (C2 * m9)) / scale;

/* Clip to 0 - 255 */

Out = max(Out, 0);

Out = min(Out, 255);

Figure 7.8: The data parallel code for mask based image processing.

94

constants m1 through m9. These are multiplied by the vectors representing

the 3x3 neighborhood and finally divided by some constant scale factor, scale.

While this produces the desired image, the last two operations, max()

and min() make sure that the output values are between the desired values zero

and 255. All values less than zero are mapped to zero and all values greater

than 255 are mapped to 255.

Figure 7.9 gives the circuit extracted from the data parallel code in

Figure 7.8. From an external point of view, the circuit is identical to the

previous two dimensional cellular automata circuit. Three vector inputs, A, B

and C produce a single output vector Out.

Internally, the circuit resembles the two dimensional cellular automata

circuit. The major difference is that nine multiplier units are used to scale

the masked values. The constant values m1 through m9 are input as the scale

factors to this circuit.

Note that since these scale factors are typically small constant values, it

is possible to replace the multipliers with circuits optimized for these constant

operations. This approach is especially desirable when a single specific mask is

used. If several masks are to be used, standard multipliers may be employed.

The functionality can then be changed by simply modifying the values input

to the multiplier units.

The images in Figure 7.10 show the results of the the smoothing kernel.

Here the constant mask values m1 through m9 are all one. This essentially

eliminates the effect of the multipliers, providing a simple sum of the 3x3

neighborhood. This is identical to the function of the upper portion of the two

95

CA

Out

B

++

+

+

+

+

+

**

*

* *

*

* *

*

m1

m2

m3

m4

m5

m6

m7

m8

m9

+

max

min

/

scale

0

255

Figure 7.9: The extracted image processing circuit.

96

dimensional cellular automata circuit.

(a) (b)

(c) (d)

Figure 7.10: The effect of the smoothing operation.

After summation, the sum is divided by nine which should bring it

back into the desired range of zero to 255. The max and min operators are

nevertheless employed to ensure a valid pixel range. While not necessary for

the smoothing operation, other operations may require this remapping into a

valid range.

The images in Figure 7.10 show the effect of the smoothing operation.

97

The first image (a) is the unprocessed image. The second image (b) is the

original image after one smoothing operation. Some decrease in the sharpness

of the image can be noticed. The images in (c) and (d) show the initial image

processed 10 and 20 times, respectively, with the smoothing operator. The

blurring of the image at this point is very noticeable.

A different type of operation is shown in Figure 7.10. Here, rather

than blurring features in the image, features are enhanced. This set of images

demonstrates the the ability of spatial masks to provide the outline of features

in an image. This function is especially important for various image recognition

algorithms.

The first image (a) in Figure 7.11 is the original unmodified image. The

image in (b) was processed with a horizontal edge detection mask. Note that in

the image, only the horizontal edges which are darker above and lighter below

are prominent. This is because of the use of negative numbers by the mask.

Edges which are lighter above and darker below produce large negative values

which are mapped to zero.

The third image (c) shows the result of processing with the vertical

edge detection mask. Note the prominence of vertical edges in the image. As

with the horizontal edge detection function, the gradient operator can produce

negative values. In this displayed image, they are again mapped to zero.

The last image (d) combines the horizontal and vertical edge detection

operations to produce the complete two dimensional image gradient. Here both

horizontal and vertical mask processing is performed, with the images being

combined as the square root of the square of the pixel values. Note the distinct

98

(a) (b)

(c) (d)

Figure 7.11: An edge detection example.

99

edges in this image. Figure 7.12 gives the data parallel code which implements

this combined mask processing approach.

Horiz = ((A * h1) + (A1 * h2) + (A2 * h3) +

(B * h4) + (B1 * h5) + (B2 * h6) +

(C * h7) + (C1 * h8) + (C2 * h9));

Vert = ((A * v1) + (A1 * v2) + (A2 * v3) +

(B * v4) + (B1 * v5) + (B2 * v6) +

(C * v7) + (C1 * v8) + (C2 * v9));

Out = sqrt((Horiz * Horiz) + (Vert * Vert));

Figure 7.12: The data parallel code for edge detection.

In Figure 7.12, the mask values for the horizontal edge detection mask

are given by the values h1 through h9. Similarly, the values of the vertical edge

detection mask are given by the values v1 through v9. The final output Out

is given by the combination of the horizontal and vertical edge detected data.

Again the vector definitions for A, B and C are omitted, as is the final mapping

to values between zero and 255.

Figure 7.13 gives the circuit extracted from this code. For clarity the

functions which produce the Horiz and Vert have been condensed into a single

functional unit. The internal implementation of these functional units is iden-

tical to the upper portion of the original circuit in Figure 7.9. The scaling and

the remapping to values between zero and 255 is not performed, however.

Again, this circuit takes in three input vectors and produces a single

output. What is unique is that two image processing functions are performed

in a single pass. While not possible for cascaded functions, functions which

100

Vert

CA

Out

B

*

+

Horiz

*

sqrt

Figure 7.13: The edge detection circuit.

proceed in parallel, particularly those operating on the same image data, can

be performed without impacting the input or output bandwidth of the circuit.

Also of consequence is the fidelity of the final output. In edge detection,

some pixel values generated by the horizontal and vertical edge detection masks

can be as much as four times the magnitude of the original pixels. The pixel

values may also be positive or negative. If this processing is performed serially

in stages, with intermediate images produced, much of the information can be

lost. The reconfigurable processor permits wider internal datapaths to preserve

the accuracy of the calculation. Only after all calculation has been performed

will the pixel values be mapped to the valid range.

Figure 7.11 verifies this enhanced accuracy. Note that the final edge

detected image in (d) contains more and sharper gradient information than the

combination of the horizontal and vertical edge detected images in (b) and (c).

101

In particular the negative valued gradients have been preserved and contribute

to the calculation.

Finally, an example of processing using the Laplacian mask is shown in

Figure 7.14. This mask also enhances gradients, much like the edge detection

masks. Rather than taking the two dimensional first derivative, this mask takes

the equivalent of a two dimensional second derivative. While this does detect

edges, it also amplifies any noise in the image. Figure 7.14 verifies that both

horizontal and vertical edges are indeed detected with this mask, but with more

noise than in the previous example.

(a) (b)

Figure 7.14: Laplacian edge detection.

Several other spatial masks may be used to perform various image pro-

cessing functions. These may be implemented by the circuits described in the

section, with only the constant scaling inputs changed.

And since this also provides the functionality of a general two dimen-

sional cellular automata with a 3x3 neighborhood, this circuit can also be used

102

to implement various multi-state cellular automata. Such automata are finding

widespread use to simulate physical phenomena, including chemical reactions

and turbulent fluid flow. It is expected that these applications will also be

implemented efficiently on reconfigurable machines.

7.1.4 Performance

Table 7.1 compares the performance of four high performance architectures with

the predicted performance for a reconfigurable system. The first machine in

the table in the CAM-6, a machine dedicated to cellular automata applications.

This machine is capable of producing a 256 by 256 array of cells updated at a

rate of 60 Hz. This gives a total rate of approximately 4 Million Cell Updates

Per Second or MCUPS. This rate is approximately the same as a CRAY 1

supercomputer [87].

Machine MCUPS

CAM-6 4
CRAY 1 4
CRAY 2/XMP 100
Reconf. Arch. 50

Table 7.1: Performance of cellular automata implementations.

Higher performance supercomputers, the CRAY 2 and the CRAY XMP,

simulate at a rate of approximately 100 MCUPS. A reconfigurable system run-

ning at 50 MHz is able to update approximately one cell per cycle. This gives

an estimated rate of 50 MCUPS. This rate, while half that of the high-end

supercomputers, requires substantially less hardware.

103

7.1.5 Other Related Work

Other work has been performed using reconfigurable hardware for cellular au-

tomata based physical simulations [91, 94, 87]. Similarly, reconfigurable logic

has also been used in several recent image processing applications [14, 85, 107,

1, 115, 122].

Two factors contribute to make this application area well suited to im-

plementation in reconfigurable logic. First, these algorithms exhibit a high

degree of data parallelism. This permits large amounts of data to be processed

by the reconfigurable logic, providing relatively large increases in performance.

Secondly, the calculations performed are relatively simple. Data paths

in these applications are typically one to eight bits wide. The arithmetic and

logical operations performed on this data are also relatively simple. Boolean

operations are especially common. The simplicity of the calculations permit

implementation with a very small amount of hardware.

These factors combine to make this a natural application area for re-

configurable systems. What has been demonstrated here is that these types of

highly parallel algorithms can be easily specified in a high level language and

translated directly into high performance pipelined circuits.

7.2 String Matching

Comparing the values in two strings is a common operation. Often it is desirable

to know whether or not two strings match exactly. A more complicated, but

often more important question is not whether or not two strings match exactly,

but how closely they are matched.

104

The search for similarity in strings has many practical applications.

Originally devised to detect and correct typographical errors for data entered

into computers, string comparison techniques have been applied to applications

involving such diverse areas as computer science, geology, chemistry and genet-

ics [111]. All of these applications involve an attempt to match inexact data

to some predefined template.

7.2.1 String Comparison

When comparing two strings for similarity, some metric must be used to gauge

their similarity. One common metric is the edit distance. The edit distance is

defined as the number of operations necessary to convert one string to another.

In general, there are two operations used to convert one string to another.

These are deletion and insertion. A third operation, substitution, can be viewed

as a combination of a deletion and an insertion. These operations are performed

just as one would suspect. A deletion removes a character from a string and

an insertion add a character to the string. The minimum number of operations

necessary to convert one string to another is the edit distance.

It is the notion that the edit distance must be the minimum number

of edits that makes this comparison difficult. Because there are many ways to

convert one string to another, some method for tallying these operations and

their cumulative effect must be employed.

As a brief example, consider the strings “mail” and “male”. There

are many ways to convert one to the other using insertions and deletions. The

trivial approach is to delete each letter in the source string and insert each letter

in the destination string. While a valid approach, and perhaps the minimum

105

possible edit, this approach is guaranteed to take 2N operations, where N is

the length of the string.

A second approach in this example would be to only insert and delete

the last two characters. This reduces the edit distance from eight to four.

Another approach is possible, that of deleting the “i” in the source string and

inserting a “e” at the end. With two edits, the string has been converted from

the source to the destination.

7.2.2 A Dynamic Programming Algorithm

In the early 1970s, at least nine independent discoveries of a dynamic pro-

gramming algorithm for computing the minimum edit distance were published.

These algorithms were published in journals in the U.S.S.R., the U.S.A., Japan,

Canada and France in fields as diverse as computer science, molecular biology

and speech processing [111, 128].

The algorithm for finding the minimum edit distance between two strings

involves the computation and storage of values in a two dimensional table. The

number of elements in this table will be the product of the lengths of the two

strings.

Each element in the table is computed based on three previously com-

puted values. Figure 7.15 gives the relative location in the table of the values

used in the calculation. The values a, b, c are the previously computed values

and are used to calculate the value of d.

Because the algorithm depends on the previously computed values, the

calculation proceeds from the upper left corner of the array to the lower right.

106

Tj

...
a b

Si · · · c d

Figure 7.15: The values used to calculate d.

This propagates computed values from the upper and left portion of the array

to the lower right.

Equation 7.1 gives the operation performed on a, b and c to produce

a value for d. In this case, it is assumed the cost of each edit operation is

unity. In the general case, a different cost may be assigned to an insertion and

a deletion, depending on the matching criteria.

d = min

{
a if Si = Tj

a + 2 if Si �= Tj

b + 1
c + 1

(7.1)

This process continues until each character in the source string is com-

pared to each character in the destination string. For a source string of length

N and a destination string of length M , this produces a table of NxM values.

The minimum edit distance is the last value computed, the value in the lower

rightmost corner of the array.

Given the example for the strings “male” and “mail”, the table in Fig-

ure 7.16 is constructed. While at first the dynamic programming algorithm

may be less than intuitive, seeing a table such as the one in Figure 7.16 helps

to explain the technique.

First, the first row and first column of the array are set to increasing

107

m a i l
0 1 2 3 4

m 1 0 1 2 3
a 2 1 0 1 2
l 3 2 1 2 1
e 4 3 2 3 2

Figure 7.16: The values used to calculate d.

integral values, starting with zero. This permits the calculation to begin with

the values 0 for a, 1 for b and 1 for c. In this case, since the first two characters

in the string match, the value 0 is propagated diagonally downward from a.

Note that for two matching strings, this 0 is propagated all the way

down the main diagonal, producing the final string edit distance of zero, as

expected. Other values in the table keep track of other possible edits of the

source string.

The path taken by the propagated values that eventually ends at the

lower rightmost corner of the array represents the edits performed to transform

the string. Note that there may be several such paths. This indicates that more

than one edit sequence could produce the destination string from the source in

some minimum number of edits.

7.2.3 Searching Genetic Databases

While this string matching technique has found a large number of applications,

one particular application, the matching of genetic information, has led to an

increased interest in this area [131].

By the mid-1980s, the technology used to identify genetic sequences had

108

progressed to the point where an ambitious research effort known as the Human

Genome Project was launched [124]. The goal of this project was to collect the

existing genetic sequences mapped by researchers and place them in a com-

mon database. The goal was to eventually catalog the entire human genome.

This database would catalog approximately 3 billion (3x109) pieces of informa-

tion. This amount of information, if printed, would require approximately 200

volumes with 1000 pages each.

While a large database, the difficulty arises in that the searches are not

exact. The desire to find similar, not exact, sequences requires that the algo-

rithms such as the dynamic programming algorithm used for string comparison

be employed.

Unfortunately, this algorithm has a computational complexity of O(nm)

for two strings of different length, or simply O(n2) for strings of the same

length. This quadratic complexity is manageable for smaller strings, but makes

comparison of larger strings unfeasible using traditional techniques. Vector

supercomputers, parallel supercomputers, custom hardware [78] [79] [81] and

reconfigurable systems [56] have been employed in the search of these genetic

databases.

7.2.4 A Parallel Implementation

While the complexity of the dynamic programming algorithm for string match-

ing is quadratic, one approach to managing this complexity is to use multiple

processors. Unfortunately, the structure of the computation limits the amount

of available parallelism. Each computed value d depends on three previously

computed values in the preceding row and column. Because the values are

109

computed recursively, this algorithm can neither be parallelized nor vectorized

along rows or columns.

At first, it may seem that a parallel prefix operation in the form of a

min-scan() could be employed to implement this algorithm. Unfortunately,

the combination of the increment operation and the min operation make this

calculation impossible to implement using this approach.

Fortunately, while there are dependencies across rows and columns, cal-

culations along the lower-left to upper-right diagonals in the matrix are in-

dependent and may be calculated in parallel. In order to take advantage of

these independent calculations, these diagonal vectors must be identified and

defined. Rather than attempting to define these diagonals based on the square

matrix, a slight transformation of the algorithm will be performed.

Figure 7.17 shows a second example of a table generated by the dynamic

programming algorithm. In this case, the data in the two strings consist of the

characters a, c, g and t. These represent the four nitrogenous bases, adenine,

cystosine, guanine and thymine which describe a DNA sequence.

t g g a

a

c

g

g

0

1

2

3

4

1 2 3 4

2 3 4 3

3 4 5 4

4 3 4 5

5 4 3 4

Figure 7.17: An example table.

110

In order to vectorize the algorithm, the table containing the data is

skewed downward. This shift removes one of the data dependencies and permits

the algorithm to be vectorized across rows.

Figure 7.18 gives the modified table showing the relation of the values

calculated by the algorithm. Note that this representation does not alter the

algorithm itself. Only the data representation is re-oriented.

t
g

g

a

a

c

g

g

0

1

2

3

4

1

2

3

4

2

3

4
3

3

4

5

4

4

3

4

5

5

4

3

4

A

B/C

D

Figure 7.18: The table realigned for vectorization.

To generate this skewed table, the values of a, b, c and d are similarly

reorganized. Rather than the square in the original diagram, the values now

form a parallelogram as in Figure 7.19. As in the previous approach, the values

are calculated from the upper left to the lower right corner of the matrix. The

final minimum edit distance is again found in the lower right hand corner of

the matrix.

111

Tj

...
a
c b

Si · · · d

Figure 7.19: The values new used to calculate d.

7.2.5 Conditionals

The string matching algorithm is not yet implementable using the existing

programming model. Up to this point, only arithmetic and logical operations

on vectors have been performed. The string matching calculation requires a

comparison and a conditional calculation.

Athanas describes a method for implementing the IF statement from the

C language. The statement is mapped onto multiplexer or MUX based circuits

[6]. This approach was used to produce combinational circuits. An extension of

this method to the data-parallel programming model permits conditional code

statements to be translated into pipelined circuits for vector computations.

In the conditional statement in Figure 7.20, vector x is assigned to some

function f(x) when the clause cond is true. In an instruction set architecture,

this code represents a control structure which would generate a comparison and

a branch instruction. If cond is false, the assignment statement will simply not

be executed.

if (<cond>)

x = f(x);

Figure 7.20: A conditional statement.

112

Translating this code statement into a digital circuit, particularly a

pipelined circuit, presents some problems. First, the dataflow graph repre-

sentation of the code must be extended to account for the conditionals. In

addition, some technique for converting these graph structures to circuits must

be specified.

If a MUX-based solution is considered, it is possible to consider the

MUX a macrocell, much like the other arithmetic and logical macrocells. The

MUX macrocell, however, takes three, rather than two inputs. Two of these

inputs will be data inputs corresponding to the true and false cases. The third

input will be a single bit for the select line.

Using this approach, two distinct alternatives must be supplied for each

conditional clause. This approach introduced here will be referred to as the dual

assignment rule. For each value assigned in the if clause of a conditional state-

ment, there must also be a corresponding assignment in the else clause. These

values are calculated in parallel and selected appropriately. In Figure 7.20, the

lack of an else clause implies an identity assignment. The implied code is shown

if Figure 7.21.

if (<cond>)

x = f(x);

else

x = x;

Figure 7.21: The implied dual assignment.

This implied assignment supplies the MUX with its two necessary inputs

permitting a valid dataflow graph to be constructed. A circuit for this code

113

fragment is shown in Figure 7.22. It should be noted that the select input

to the MUX is necessarily boolean. This input is typically formed by using a

comparison operator.

f

condx

x

Figure 7.22: The conditional circuit.

7.2.6 The Data Parallel Implementation

With the ability to perform conditional calculation and the vectorizable rep-

resentation of the string matching algorithm, data parallel code implementing

this algorithm may now be written. The portion of the code which performs

the calculation is a direct translation of the arithmetic formula in Equation 7.1.

Figure 7.23 shows this calculation.

if (S == T)

A1 = A;

else

A1 = A + 2;

M = min(A1, (B + 1));

D = min(M, (C + 1));

Figure 7.23: The data parallel code for the string matching algorithm.

114

There are five input vectors to the algorithm, A, B and C, and the

strings T and S. A starts as the top row of the matrix. Similarly, C is the

second row. B is the same data in the C vector, but shifted by one. These

input values produce the single output vector D.

After the D vector is output, the process is repeated, with the new A

vector being the previous C vector, and the newly calculated D vector becoming

the C vector. This process continues downward in the array ((2∗n)−1) times,

until the minimum edit distance is generated. Figure 7.24 shows the circuit

extracted from this data parallel code.

==+ ++

min

min

T SA

11 2

C B

D

Figure 7.24: The circuit for the gene matching algorithm.

The code in Figure 7.23 gives only the arithmetic and logical vector

115

operations in the calculation. The other control information, including the

definition of the input vectors, is not included in this source code listing.

Some implementation details describing the definition of the vectors

should be mentioned. First, the integer values in the top diagonal and the left

edge are computed along with the other values in the algorithm. The vectors

are all padded with two extra values, one at the beginning of the vector and one

at the end. These values are initialized to some value greater than zero. This

permits the first row and column of sequential integers to be generated on the

fly. Rather than use this trick, it would be possible to have the host processor

increment these values. Whether this would be the most efficient approach will

be implementation dependent.

Also, the generation of the string vectors S and T is not shown in the

code. Recall that each character in S must be compared to each character in

T. This is accomplished by fixing the T vector, and comparing it to a “rotated”

version of the S vector on each iteration. This rotation involves shifting all of

the elements in the S vector one step to the right. This is easily accomplished

by redefining the vector using a stride() operation.

7.2.7 Performance

Discounting latency and other overheads, this circuit is capable of performing

one comparison per cycle. For a circuit operating at 50 MHz, this performs

approximately 50 millions comparisons per second.

Hoang quotes performance levels of approximately one million compar-

isons per second for workstation class uniprocessors [56]. A Connection Ma-

116

chine with 16K processors achieves less than 6 million comparisons per second.

In an implementation of this algorithm using reconfigurable hardware

Hoang achieves a maximum of 43,000 million comparisons per second. This im-

plementation uses a relatively large 16 board reconfigurable system. A smaller

system using a single board achieves 370 million comparisons per second [56].

The data parallel approach is superior to conventional uniprocessors by

a large factor, and even superior to large parallel machines for this algorithm.

Curiously, however, similar reconfigurable hardware is able to provide orders of

magnitude higher performance. The reason for this large gap in performance

has to do with the structure of the algorithm. The regular flow of data in the

dynamic programming algorithm, as well as the simple operations performed

on the data make this algorithm an ideal candidate for a systolic implementa-

tion [73, 74, 13]. In this systolic implementation, hundreds or even thousands

of small special purpose computational units work in unison on the problem.

This systolic implementation provides a high performance, low bandwidth, mul-

tiprocessor implementation of the algorithm.

Unfortunately, the data parallel approach is not geared toward exploit-

ing this type of parallelism. For algorithms with this structure, further perfor-

mance gains are possible. These gains can best be achieved using a program-

ming model which supports the systolic framework. A second alternative is to

use a circuit design methodology to produce a custom systolic array. This ap-

proach can be likened to using assembly language to increase the performance

of an algorithm on a conventional serial processor. In the case of the reconfig-

urable processor, however, the gains may be several orders of magnitude.

117

7.3 The Mandelbrot Set

The algorithm to calculate the Mandelbrot set is a popular computationally in-

tensive algorithm. The ubiquitousness of this algorithm has made it something

of a benchmark for high performance systems. Much of the popularity of this

algorithm can probably be attributed to the interesting bitmaps it generates.

The formula for the algorithm is very simple. A single quantity is re-

cursively calculated using the formula in Equation 7.2.

z = z2 + c (7.2)

In this equation, z and c are both complex numbers. Initially, z is set

to zero, and c is set to some initial condition. The value of z is then iteratively

calculated. Since this calculation is non-linear, the value of z can be expected

to either remain within fixed bounds, or diverge toward infinity.

When calculating the Mandelbrot set, the quantity of interest is not

the actual value of z, but rather the number of iterations taken before the

equation diverges. It is known that when the magnitude of either the real

or the imaginary portion of z becomes greater than 2, the values will diverge

toward infinity. The number of iterations taken to reach this point of divergence

is the quantity of interest.

In most implementations of the Mandelbrot set algorithm, several initial

conditions are calculated together. These points are usually equally spaced

within the complex plane. The iterations counts are then plotted graphically,

with individual display pixels corresponding to the points in the complex plane.

118

Since each calculation is independent, there is a large amount of parallelism

exploitable in the algorithm.

7.3.1 Functional Decomposition

The calculation of the Mandelbrot set makes extensive use of complex arith-

metic. In the complex number system, values are represented as pairs of num-

bers describing the real and imaginary components.

In the vector model of computation, all quantities are linear arrays of

contiguous values. To perform calculations using complex values, a complex

vector data type must be specified. This data type will consist of two standard

vector data types grouped into a C-like structure.

The two complex operations used in the calculation, addition and mul-

tiplication, must also be specified in terms of existing arithmetic or logical

operations. Complex addition is fairly simple. The real and imaginary parts

of the vector are added, respectively. The data parallel code for this function

is shown in Figure 7.25. This code uses C++ style operator overloading.

A digital circuit can be extracted from this function. This circuit is

derived from the dataflow graph of the code. Since there are two addition

operations, and both are independent, the circuit is fairly simple. Figure 7.26

shows the extracted circuit from this function. Using a standard addition

macrocell, a new complex addition macrocell is created. This new cell can

be used in conjunction with existing macrocells. It may even be used in the

construction of other, more complicated macrocells.

In a similar fashion, data parallel code can be written to multiply two

119

/* A Complex vector */

struct Complex {

float Re[N];

float Im[N];

};

/* Complex addition */

Complex "+"(Complex A, Complex B) {

Complex Sum;

Sum.Re = A.Re + B.Re;

Sum.Im = A.Im + B.Im;

return (Sum);

}; /* end "+" */

Figure 7.25: The code for complex addition.

++ +

A.re A.im B.re B.im
A B

SumSum.re Sum.im

Figure 7.26: The complex addition circuit.

120

complex vectors. Note that the operation required is actually a square of the

value of z. Rather than implement the special case of a squarer, the more gen-

eral multiplication unit is implemented. The code used to implement complex

multiplication is shown in Figure 7.27.

/* Complex multiplication */

Complex "*"(Complex A, Complex B) {

Complex Prod;

Prod.Re = (A.Re * B.Re) - (A.Im * B.Im);

Prod.Im = (A.Im * B.Re) + (A.Re * B.Im);

return (Prod);

}; /* end "*" */

Figure 7.27: Code for complex multiplication.

As with the addition operation, the dataflow graph of the code may

be constructed and used to produce a digital circuit implementation of the

operation. In this case, four multiplications, an addition and a subtraction are

performed. The circuit in Figure 7.28 is extracted from the dataflow graph of

the code.

7.3.2 The Initial Condition Vector

With the necessary support for complex arithmetic in place, a data parallel

description of the algorithm can be written. The first issue concerns the values

in the initial condition vector, c. This vector will contain the real and imaginary

values representing points in the complex plane. The simplest approach to

supplying these values would be to consider this vector a static constant that

is initialized before calculation begins.

121

*

*

−

*

+

* *

A.re A.im B.re B.im

Prod.re Prod.im

Prod

A B

Figure 7.28: The complex multiplication circuit.

While a simple alternative, these points would still have to be calculated,

perhaps off-line, by some host machine. It is desirable to calculate these values

using the reconfigurable hardware.

The values to be generated are points in the complex plane. If the X-

axis is considered to represent the real values, and the Y-axis imaginary values,

the problem is just one of producing evenly spaced (X, Y) points in this plane.

Since the values used are real and imaginary vectors, data parallel op-

erations on each value in the vector must be used. One approach to producing

the desired vectors is:

1. Declare a vector of length (X SIZE ∗ Y SIZE)

2. Generate non-negative integer points in the plane

3. Scale the values

122

4. Offset to the proper coordinates

The code which uses this approach to generate the c vector is shown

in Figure 7.29. For simplicity, each line of code in Figure 7.29 performs a

single operation. It should be noted that since only two quantities are being

calculated, it is possible to merge the 12 lines of code in the example into two

somewhat more complex lines of code.

First, in generating the non-negative integer values, the parallel prefix

add-scan() operation is employed. Along with a constant initialization and a

constant subtraction, this operator is used to produce vectors which range from

0 to (X SIZE ∗ Y SIZE). The modulus operator (%) is used to produce the

real portion of the vector, breaking the vector into Y SIZE segments with

values running from 0 to X SIZE.

In a similar fashion, the integer division operator (/) is used to break the

imaginary vector into Y SIZE segments containing all 0s in the first segment,

1 in the next segment, etc ...

The scaling and translation is accomplished using a constant multipli-

cation and an addition. The technique used is the same for both real and

imaginary portions of the c vector.

Employing the functional decomposition technique that was used by the

complex arithmetic circuits, a circuit for producing the complex vector c can

also be constructed. Figure 7.30 shows a diagram of this circuit. Note that only

constant values are used as circuit inputs. These constants may be integrated

directly into the circuit, rather than input as vectors.

123

/* Calculate real portion of vector */
c.re = 1; /* [1, 1, 1, 1, ...] */
c.re = add-scan(c.re); /* [1, 2, 3, 4, ...] */
c.re = c.re - 1; /* [0, 1, 2, 3, ...] */
c.re = c.re % X SIZE; /* [0, 1, 2, 3, ... 99, */

/* [0, 1, 2, 3, ... 99, */
/* ... */
/* [0, 1, 2, 3, ... 99] */

/* Calculate imaginary portion of vector */
c.im = 1; /* [1, 1, 1, 1, ...] */
c.im = add-scan(c.im); /* [1, 2, 3, 4, ...] */
c.im = c.im - 1; /* [0, 1, 2, 3, ...] */
c.im = c.im / Y SIZE; /* [0, 0, 0, 0, ... 0, */

/* [1, 1, 1, 1, ... 1, */
/* ... */
/* [99, 99, 99, ... 99] */

/* Scale real */
c.re = c.re * X SCALE; /* [0.00, 0.02, ... 1.98, */

/* ... */
/* [0.00, 0.02, ... 1.98] */

c.re = c.re + X START; /* [-1.00, -0.98, ... 0.98, */
/* ... */
/* [-1.00, -0.98, ... 0.98] */

/* Scale imaginary */
c.im = c.im * Y SCALE; /* [0.00, 0.00, ... 0.00, */

/* ... */
/* [1.98, 1.98, ... 1.98] */

c.im = c.im + Y START; /* [-1.00, -1.00, ... -1.00, */
/* ... */
/* [0.98, 0.98, ... 0.98] */

Figure 7.29: Code for the initial condition vector.

124

−

C

*

+

%

+ 1.0

1.0

X_SCALE

X_START

X_SIZE

C.re

−

*

+

/

+ 1.0

1.0

Y_SCALE

Y_START

Y_SIZE

C.im

C

Figure 7.30: The initial condition circuit.

As with the complex arithmetic operators, this code may be packaged

as a function and used as a macrocell. Note that the c macrocell has no inputs

but outputs a new complex value with each clock cycle. This lack of inputs

reduces the required bandwidth of the final circuit.

7.3.3 The Calculation

With the code and corresponding circuits for complex operators and condi-

tional statements available, the implementation of the algorithm can proceed.

Figure 7.31 shows the code used to implement the Mandelbrot set.

As in the other examples, this data parallel code is used to produce a

pipelined digital circuit. Figure 7.32 shows the final circuit extracted from the

dataflow graph of the code. Note that the previously defined “c” and complex

125

if (z < 4.0) {

z = (z * z) + c;

pixel = pixel + 1;

}

Figure 7.31: The code to calculate the Mandelbrot set.

arithmetic operators are used in this circuit.

C

+

*

Z

4.0

Pixel

+

>

1.0

Z Pixel

M−set

PixelZ

Z Pixel

Figure 7.32: The Mandelbrot circuit.

The final circuit has very low bandwidth requirements. A complex vec-

tor z and a vector containing corresponding pixel values is input to the circuit.

The updated complex vector z and pixel values are output. A total of three

numeric values are input to the circuit and three numeric values output per

clock cycle. During this clock cycle, approximately 20 arithmetic operations

are performed.

The simulated output of this circuit is reproduced in Figure 7.33. For

126

monochrome reproduction, the image below was produced by thresholding an

8-bit bitmap. The familiar outline of the Mandelbrot set is clearly visible.

Figure 7.33: The Mandelbrot set.

7.3.4 Circuit Complexity and Performance

As with other circuits produced using this technique, one result is output per

clock cycle. At 50 MHz, 50 million pixels are updated per second. Note that

this technique produces successive approximations to the Mandelbrot set. In

approximately 1 second, 50 iterations of a 1Kx1K bitmap can be processed.

Including MUXes, this circuit uses 24 functional units. At 50 MHz, this corre-

sponds to 1200 million operations per second (MOPS).

7.4 Neural Networks

Neural networks represent a biologically inspired model of computation whose

history is as long as that of digital logic [89]. While these models are often used

127

by researchers to study the activity of actual biological systems, they have also

become a popular method of performing computation. The tasks performed by

these networks tend to be tasks which are ill-suited to traditional algorithmic

approaches. The neural network model has been used successfully in vari-

ous pattern recognition tasks, including object identification and handwriting

recognition.

While a useful algorithm for many computationally difficult tasks, the

neural network model is itself computationally intensive. While it exhibits large

amounts of parallelism, execution on general purpose hardware is still typically

slow.

7.4.1 The Neural Network Model

Several different neural network models are currently in use. Lippmann gives

a good overview of these models [77]. Hush and Horne update Lippman’s

overview and provide a large bibliography of more recent work in the area [57].

The particular model considered here was popularized by the work of

Rumelhart, McClelland, Hinton and others [109, 88]. The network model is

shown in Figure 7.34. This model contains three layers of neurons. These layers

are referred to as the input layer, the hidden layer and the output layer. Data

flows from the input neurons, through interconnections to the hidden neurons,

then through interconnections to the output neurons. The path through the

network is feed-forward and layered.

Each neuron broadcasts its output value to all neurons in the next layer.

These output values pass to the next layer of neurons via weighted connections.

128

.

.

.

.

.

.

.

.

.

Figure 7.34: A three layer feed-forward network.

These weighted connections amplify or attenuate the output values before they

are input to the neurons in the next layer. The weighted values are summed,

processed by some limiting function, then output to the next layer.

The values of the weights for the interconnections define the behavior

of the network. Automated techniques exist that allow networks to “learn”

the values of these weights. For a set of inputs A = (a1, a2, a3, ...), a set of

associated weights W = (w1, w2, w3, ...) and a limiting function f(x) we can

describe the behavior of a neuron with Equation 7.3.

output = f

(∑
i

aiwi

)
(7.3)

Despite this simple representation, calculating the output of this net-

work is a computationally intensive problem. Each weighted interconnection

in the network requires a multiplication and an addition operation. In a fully

connected network with I inputs, H hidden units and O outputs, the number

of interconnections is (I × H) × (H × O). To calculate the outputs of this

network, (I×H2×O) multiplications and additions must be performed as well

129

as (I + H + O) limiting functions f(x). This gives an overall computational

complexity of O(n2).

*

+

*

*

*

*

Figure 7.35: A digital representation of a neuron.

Figure 7.35 shows a direct digital hardware implementation of a neuron.

For a neuron with N inputs, N multipliers, N − 1 adders and the hardware to

implement the limiting function, f(x), are required. For networks containing a

large number of neurons, this direct hardware implementation quickly becomes

impractical.

7.4.2 A Vector Representation

The neural network model contains a large amount of parallelism. From the

model, it is clear that all weighted inputs in a layer can be calculated concur-

rently. While this is possible, the number of hardware multipliers necessary

to perform this task make this approach impractical for all but the smallest

networks. This parallelism, however, may also be expressed in vector form.

From this vector representation an efficient custom circuit can be extracted.

A vector representation of the network is shown in Figure 7.36. This

figure shows a small network used to implement the Exclusive-OR function.

130

The values of the inputs, outputs and weights are grouped into vectors.

7.29 −7.64

−3.29

5.39 2.14

−5.80
−3.69

−3.70

−5.94

Out = [o1]

W2 = [7.29 −7.64 (−3.29)]

W1 = [−3.69 −3.70 (5.39)]

[−5.80 −5.94 (2.14)]

In = [i1 i2 (1.0)]

H = [h1 h2 (1.0)]

o1

i1 i2

Figure 7.36: An Exclusive-OR network.

The interconnection weights between the input and hidden layers are

stored in the variable W1. This variable is used to represent a matrix of values,

but is stored as a single vector. The length of this vector is equal to the

number of input units plus one, multiplied by the number of hidden neurons.

The additional value associated with the input layer is for the neuron offset.

The offset can be viewed as a weight connected to an input whose value is

always ‘1’.

Similarly, the weights between the hidden layer and the output layer are

stored in the vector W2. The length of this vector, like that of the W1 vector,

is the number of hidden units plus one multiplied by the number of output

units.

Three other vectors store the state of the network. The input vector,

131

In, supplies values to the input neurons. This vector has two elements, one

for each input neuron, and is padded with an additional vector element. This

additional element is used in the calculation of the neuron bias or offset. This

offset may be viewed as a weight which is always connected to an input value of

‘1’. This last element in the input vector is always set to ‘1.0’, and represents

the offset input. This extra vector element permits the offset to be treated in

the same manner as the other weighted interconnections.

In a similar fashion, the hidden layer state vector, H, holds the output

of the neurons in the hidden layer. Like the input vector, this vector is also

padded with an additional vector element containing a value of ‘1’. Finally,

the output vector, Out, holds the value of the output neuron. This vector has

a length equal to the number of output neurons.

Using this representation, a pairwise multiplication of the input vector

In values with sections of the weight vector W1 performs all of the multiplica-

tions necessary for the calculation of the first layer. A stride() function permits

the values in the W1 weight vector to be supplied in sections which are the same

length as the In vector. This allows the proper pairing with the values in the

weight vector W1. The products of these vectors are then summed and passed

through the limiting function f(x). The final value in this summed vector is

the output of a hidden layer neuron. This process is repeated for each neuron

in the hidden layer. These sums are then copied to the hidden layer state vector

H.

After the outputs of the hidden neurons have been calculated, a similar

process is used to calculate the values of the output neurons. The vector

132

of values representing the outputs of the hidden layer, H, is multiplied by the

segments of the vector W2. Again, the stride() function is used to provide these

sections of the W2 vector. These products are summed and passed through the

function f(x) to produce the values in the output vector.

The vector-based data-parallel code for this process is fairly simple.

Figure 7.37 shows the code used to compute the output of the neurons in the

hidden layer. This vector operation is repeated for each neuron in the layer.

For clarity, declaration and initialization of the weight and input vectors are

not shown in this code.

/* Calculate outputs of hidden neurons */

W = stride(W1, start, 1, i_len, w1_len);

T1 = f(add-scan(W * In));

Figure 7.37: Code to calculate the output of the hidden layer.

In the code in Figure 7.37, a vector W is defined using a stride() function.

This takes the values in the weight vector W1 which correspond to the inputs

of a single neuron. This vector is multiplied by the input vector In and the

values accumulated using an add-scan() function. The resulting vector is passed

through the limiting function f() and is stored in the temporary vector T1.

The last value in this temporary vector contains the output of the hidden

layer neuron. The other vector elements in T1 contain partial sums and are

discarded. This process is repeated for each of the neurons in the hidden layer.

The code for calculating the values of the output neurons is nearly iden-

tical to the code used to calculate the outputs of the hidden neurons. If the

133

second layer weight vector list W2 is substituted for the first layer weight vector

list W1 and the hidden layer output vector H is substituted for the input vector

In, the code is the same. Given the regular structure of the network model,

this similarity is not surprising.

7.4.3 The Sigmoid Function

The function f(x) is used to limit the values of the neuron outputs. In this

network, we wish to limit the output to values between 0 and 1. McClelland

and Rumelhart [88] use what they term the logistic function to perform this

limiting. This function is given by Equation 7.4.

f(x) =
1

1 + e−x
(7.4)

This equation was selected because it provides the necessary limiting

of the outputs while having some properties which are useful in the learning

phase of the algorithm. Unfortunately, this equation contains the transcen-

dental function ex, which is somewhat difficult to calculate. Nordström and

Svensson [97] list several functions which may be used as an approximation to

the function used by McClelland and Rumelhart. These functions all have the

same general characteristics. They are continuously increasing, approach 0 at

−∞ and 1 at +∞, and have a continuous first derivative. The approximation

we will use is given by the function in Equation 7.5.

f(x) =
1

2

(
x

1 + |x| + 1

)
(7.5)

134

This function is a simple polynomial which uses no transcendentals. The

graph in Figure 7.38 shows both the logistic function of McClelland and Rumel-

hart, given by f1(x) and the approximation above, given by f2(x). Note that

the curves provide a similar limiting function. It is the general characteristics

of the sigmoid, not the precise equation which is important in this case.

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4

f(
x)

x

f1(x)
f2(x)

Figure 7.38: Sigmoid activation functions.

The C-like code for the function f(x) is shown in Figure 7.39. It is

a straightforward translation of the equation into software. Note, however,

that the code is vector-oriented. For clarity the data type Vector is used. In

this case, this data type is simply the renaming of the C language array of

floating point values. The function f(x) takes as its input parameter the data

type Vector. The result is also a Vector. This specification indicates that this

function performs a vector operation which can be mapped to the reconfigurable

hardware.

135

/* Sigmoid activation function */

Vector

f(Vector x) {

return ((1.0 / 2.0) * (x / (1 + abs(x)) + 1));

} /* end f() */

Figure 7.39: Code for the sigmoid activation function.

7.4.4 Circuit Extraction

From these code fragments, circuits may be extracted which implement the

neural network algorithm. As in previous examples, the circuits are extracted

by creating the dataflow graph for the code. This graph is then used to configure

the hardware. Since the final result of this code is a digital circuit, the sigmoid

activation function circuit is treated as a macrocell, much like the predefined

arithmetic and logical function macrocells used by the system.

|x|

+

/

/2

+

1.0

1.0

x

1
2

x
1 + |x|

+ 1

Figure 7.40: The sigmoid activation function circuit.

136

Figure 7.40 shows the dataflow circuit for the function f(x). This circuit

takes as its input a value x and returns the output f(x). The functional units

used by the circuit are: two adders, a divider, an absolute value and a divide-

by-two circuit. Some simple optimizations have been performed on this circuit.

A divide-by-two circuit, for instance, has been used rather than a full divider.

Once the circuit for this function has been extracted, it may be used as a

macrocell, much like the other macrocells in the circuit.

+

*

Out

InW

Figure 7.41: The neural network circuit.

Once the circuit for the sigmoid activation f(x) has been extracted,

the code for the neuron output calculation may be converted into a circuit.

In this case, the circuit is very simple. As Figure 7.41 illustrates, the weight

and the input vectors are multiplied, with the results being accumulated by

an add scan() macrocell. The result is then passed to the sigmoid activation

function for output limiting.

137

This circuit processes one set of vectors for each neuron in the network.

Because the add scan() macrocell performs an accumulate function, it will be

necessary to clear the output of this macrocell to zero before each vector oper-

ation begins. This can be accomplished either with a reset signal, or by writing

directly to the accumulate register in the add scan() macrocell. It is expected

that a reset signal will be more efficient.

7.4.5 Performance

This implementation of this neural network algorithm is well suited to a re-

configurable logic based machine. The uniform nature of the model permits a

single circuit to be configured and used to calculate the outputs of the network.

Additionally, the bandwidth requirement of the circuit is small. Two vectors

are input and a single output vector is produced. Only two input ports and

one output port are required.

One unusual feature of this circuit is the calculation performed by the

sigmoid function. While it is only necessary to take the sigmoid of the final

sum of the weighted inputs, this circuit takes the sigmoid of each of the partial

sums. This would be extremely wasteful on an instruction set architecture,

but in this case, there is no penalty for performing these extra calculations. In

fact, to do otherwise would require that more than one circuit be used in the

calculation. This would require a potentially expensive reconfiguration phase

in the algorithm. The ability to perform all of the calculations in a single pass

with a single circuit is valuable, even though some computed values are never

used.

The circuit produced by this code contains seven functional units. These

138

units are cascaded in an essentially linear pipeline. In estimating the perfor-

mance of this circuit, two assumptions are made. First, it is again assumed that

the bandwidth of the memory system is sufficient. Two values must be sup-

plied to the circuit input and one read from the output per clock cycle. Second,

it is assumed that the time taken to fill the pipeline is negligible. For larger

networks this is a valid assumption. With these assumptions, one weighted

interconnection calculation is performed per clock cycle.

Since the metric typically used to measure performance of neural net-

works is connections per second or CPS, it is a simple matter to estimate the

performance of this circuit. Since one connection is processed per cycle, the

performance of the circuit in CPS is equal to the circuit clock speed.

As a comparison, the CRAY-2 can simulate this network at approxi-

mately 50 MCPS [97]. This would correspond to a clock speed of 50 MHz

for the reconfigurable architecture. Similarly, a 10-processor Warp system has

been benchmarked at 17 MCPS [104].

Nordström and Svensson [97] give benchmarks for other architectures,

some of which calculate over 1000 MCPS. These machines, however are usually

special purpose parallel architectures. One system, GANGLION, which makes

use of reconfigurable logic to implement a fixed size network, can compute

approximately 4480 MCPS.

While these special purpose architectures provide substantial increases

over this reconfigurable logic approach as well as supercomputers, they are typ-

ically inflexible. But this does indicate that not all of the parallelism in the

algorithm is currently exploited. Other approaches using reconfigurable hard-

139

ware may provide substantially more performance, at a cost of some additional

complexity.

7.5 The Fourier Transform

A popular method for producing spectral information about a signal is the

Fourier transform. This transform converts a signal in the time domain to one

in the frequency domain. Here, instead of representing a signal by an ampli-

tude which varies over time, the signal is represented as a series of sinusoidal

frequency components, each with a phase and magnitude. This representation

is sometimes of value for its own sake, and at other times it provides an efficient

means of processing and filtering the signal.

The Fourier transform and its implementations have a somewhat colorful

history. The concept of representing signals in the frequency domain goes back

at least as far as the Babylonians. A brief historical account, with references

can be found in Oppenhheim, Willsky and Young [98].

While a potentially powerful technique for processing signals, calcula-

tion of the Fourier transform can be computationally intensive. Various tech-

niques, including sophisticated custom hardware [120] have been employed to

calculate the Fourier transform. In this section, the Fourier transform will be

implemented for reconfigurable hardware. This implementation will be ana-

lyzed and compared to other implementations.

140

7.5.1 The Discrete Fourier Transform

While the Fourier transform was originally described in terms of continuous

functions, it is also possible to perform a Fourier transform on digitized data.

Here, a set of numeric values represent the amplitude of the signal at evenly

spaced intervals. Given a set of N values, it is possible to compute the Fourier

series which represents the digitized signal in the frequency domain. The result

of this calculation is two sets of N values, representing the amplitude and phase

of the components in the frequency domain. This transformation is commonly

referred to as the Discrete Fourier Transform or DFT to distinguish it from its

continuous counterpart [20, 106].

Equation 7.6 gives the equation for computing the discrete Fourier trans-

form. The original signal is represented by the N sampled values in h0 through

hN−1. Each of these sampled values is multiplied by a complex value and

summed to produce a single component of the frequency domain representa-

tion, Hn.

Hn =
N−1∑
k=0

hke
2πikn/N (7.6)

From this equation we see that each of the N values of the original signal

h contribute to the calculation of each value H in the frequency domain. The

direct implementation of this equation is clearly of O(N2) complexity.

Equation 7.7 shows Equation 7.6 with the real and imaginary portions

of Hn computed separately. The real portion Re(Hn) gives the magnitude of

the Fourier components, while the imaginary portion, Im(Hn) gives the phase.

141

Re(Hn) =
N−1∑
k=0

(Re(hk)cos(2πkn/N) + Im(hk)sin(2πkn/N)) (7.7)

Im(Hn) =
N−1∑
k=0

(Im(hk)cos(2πkn/N) − Re(hk)sin(2πkn/N))

From this representation it is a simple matter to produce a data parallel

version of the algorithm. Figure 7.42 gives one approach to this calculation.

This data parallel implementation of the DFT calculates a single component

n of the DFT. This calculation must be repeated N times to produce all N

components of the DFT.

The first portion of the algorithm generates a vector containing the

integers from zero to (N − 1). In a serial version of this algorithm, these

values for K would typically be found in the control loop which keeps track

of the number of terms computed. As with other data parallel calculations,

this control structure information is not directly available to the calculation.

The integer values for K are instead produced by the first three lines in the

algorithm. Note that these three lines could have easily been condensed into a

single line of source code of the form K = add-scan(1) - 1. It is shown in its

expanded form with comments for clarity.

Once the K values are produced, the constant w0 is calculated. K and

w0 are then multiplied and the sin() and cos() taken. This code assumes that

library implementations of the sin() and cos() functions already exist. These

implementations may consist either of custom designed circuitry or arithmetic

sequences in data parallel code.

Once the transcendental functions are computed, the real and imaginary

142

K = 1; /* K = 1, 1, 1, ..., 1 */

K = add-scan(K); /* K = 1, 2, 3, ..., N */

K = K - 1; /* K = 0, 1, 2, ..., (N-1) */

w0 = (2 * PI * n) / N;

Sin = sin(K * w0);

Cos = cos(K * w0);

Dft re = ((In re * Cos) + (In im * Sin));

Dft im = ((In im * Cos) - (In re * Sin));

Dft re = add-scan(Dft re) / N;

Dft im = add-scan(Dft im) / N;

Figure 7.42: The data parallel code for the DFT.

portions of the DFT are calculated. These are summed using the add-scan()

operation and scaled by a factor of N . The vector calculation of length N

produces a single value in the DFT of the signal. This procedure must be

repeated N times to produce the complete transform.

From the data parallel code in Figure 7.42, a circuit can be extracted.

Figure 7.43 shows the extracted circuit. Note that two vectors are input pro-

ducing two output vectors. The output vectors, however, contains the summed

values. Only the final sum is likely to be of interest.

This implementation was tested against the data in Figure 7.44. Thirty-

two samples of the function cos(2πn/8) taken at intervals of one are used as

the input. The impulses in the figure represent the sampled values while the

sinusoidal envelope gives the sampled function.

Theory predicts that the Fourier transform of a cosine function will

produce two positive symmetrical impulses. The results of the DFT calculation

143

−

*

+

in_re in_im

dft_re dft_im

*

+ −

* **

sincos

+ +

w0

1

1

/ /

N N

Figure 7.43: The circuit for the DFT.

144

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30
Samples of cos(2*Pi*n/8)

Figure 7.44: The 32 samples of the function cos(2πn/8).

in Figure 7.45 verify this expectation.

7.5.2 The Fast Fourier Transform

While the representation of a digitized signal provided by the Fourier transform

has many powerful uses, generating this frequency domain representation from

the sampled time domain data is computationally intensive. The calculation

involves all N samples to compute each of the N transform values. This gives

the calculation an overall complexity of O(n2). Additionally, the computa-

tion involves repeated computation of sine and cosine values, which are often

themselves computationally intensive.

Fortunately, a more efficient method for computing the DFT exists.

This method is commonly known as the Fast Fourier Transform or FFT. The

modern version of this algorithm was published by Cooley and Tukey in 1965,

although similar methods were reported earlier in the century. The general

145

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30
FFT of cos(2*Pi*n/8)

Figure 7.45: The DFT of the function cos(2πn/8).

technique goes back at least as far as Gauss in the early 19th century.

This technique is based on restructuring the computation to take ad-

vantage of previously computed values. One way to view the restructured

calculation is that of breaking the computation of a single DFT of length N

into two DFT calculations of length N/2. Equation 7.8 gives the method used

to decompose the DFT into these two calculations.

Hn =
N−1∑
k=0

hke
2πikn/N (7.8)

=
(N/2)−1∑

k=0

h2ke
2πikn/(N/2) + W n

(N/2)−1∑
k=0

h2k+1e
2πikn/(N/2)

= He
n + W nHo

n

This equation reveals that the two components used to produce the

DFT are composed of the even and odd values of the original data, respectively.

146

These two smaller DFT calculations are summed, with the odd portion of the

calculation multiplied by the scale factor W n. This reduces the complexity of

the calculation from O(n2) to 2 ∗ O((n/2)2).

This process can be carried further, with each of the two smaller calcula-

tions split into even and odd portions, reducing the complexity to 4∗O((n/4)2).

This process may be continued until the data can no longer be divided in two.

The final DFT of a single value hn is simply the value of hn. For values of

N which are an even power of two, this produces an overall complexity of

O(n log2(n)).

While this is not a significant improvement for small values of n, for

larger values, the improvement can be substantial. For N = 16, the FFT is

roughly four times faster than the standard DFT. For N = 1024, the difference

is a factor of 100. Larger N produce even larger gains in efficiency.

In Equation 7.8, the value W n is specified as a scale factor for the odd

portion of the FFT. These values, sometimes referred to as twiddle factors take

the complex value given in Equation 7.9. Note that the computation of W n

contains all of the transcendentals used in the calculation.

W n = e2πi/N (7.9)

This method of computing the FFT is often given the graphical repre-

sentation shown in Figure 7.46. Here, a small FFT of eight values is computed.

Note that even and odd values are paired. Also note that there are three

distinct stages of the calculation, providing the logarithmic component of the

complexity.

147

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

F(0)

F(1)

F(2)

F(3)

F(4)

F(5)

F(6)

F(7)
W2W3

W2

W1

W0

W0

W2

W0

W0

W0

W0

W0

Figure 7.46: A standard representation of the FFT.

From this representation, a basic cell can be viewed as the basic compo-

nent of the FFT calculation. This cell is shown graphically in Figure 7.47. This

cell takes two complex values, a and b as its input. These input values are used

to produce the two complex output values c and d. The value of c is simply

the sum of a and b. The value of d is the difference of a and b, multiplied by

the appropriate value of W n.

Wn

+

+

+

−

a

b

c

d

Figure 7.47: The basic FFT cell.

Curiously, while most descriptions of the FFT rely on a basic FFT cell

such as that in Figure 7.47, the typical figure such as the one in Figure 7.46 does

not clearly distinguish these cells, except in the last stage of the calculation.

All other such cells are stretched and interleaved in some fashion.

As an alternative to this representation, Figure 7.48 rearranges the el-

ements of the diagram to provide distinct cells. This rearrangement causes

148

the previously interleaved data paths to be independent units, but causes the

values passed between stages to be interleaved.

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

F(0)

F(1)

F(2)

F(3)

F(4)

F(5)

F(6)

F(7)
W2W3

W2

W1

W0 W0

W2

W0

W0

W0

W0

W0

Figure 7.48: An alternate representation of the FFT.

Fortunately, the interleaving between stages is the same for each stage

in the calculation. The form of this interleaving is that of a perfect shuffle. The

perfect shuffle is so named because it produces data interleaved in a manner

similar to that of a deck of playing cards being shuffled. The perfect shuffle is

known to have some interesting computational properties and has been studied

in other contexts [117].

From this representation, the implementation of the basic cell is fairly

simple, but the data patterns necessary to produce the desired results may

require further exploration. Figure 7.49 shows the way in which vectors of data

are accessed to feed the inputs and produce the outputs from the basic FFT

cell. Assuming the input values are available in a single vector, producing the

vector inputs A and B is fairly simple. The input vector is split in half, with

the first N/2 elements comprising the A vector and the second N/2 elements

149

comprising the B vector.

A

B

W

f(0)

f(1)

f(2)

f(3)

f(4)

FFT

C

D

A’

B’

f(7)

f(6)

f(5)

Figure 7.49: Vectorizing the FFT.

These inputs, along with the appropriate values for W n produce two

output vectors C and D of length N/2. Before these vectors can be used by the

subsequent stages of the calculation they must be reordered. If C and D are

stored in contiguous memory locations, they may be viewed again as a single

vector of length N . A perfect shuffle of this vector produces a new vector of

length N which may be split into two new vectors A’ and B’ and fed into the

next stage of the calculation.

Fortunately, the perfect shuffle can be easily implemented using the

stride() function. Here a mixed valued stride of ((N/2)+ (1/2)) starting at the

first element in the vector produces the desired result. It should be emphasized

that for a system which has direct hardware support for mixed valued striding,

this operation takes no resources. The stride() function simply describes the

150

access pattern used. Data are not necessarily physically manipulated by this

operation.

With the basic cell and the data access pattern specified, the algorithm

can now be implemented using data parallel code. The implementation of the

basic cell for complex numbers can be taken directly from the diagram for the

cell in Figure 7.47.

Figure 7.50 shows the data parallel code for the basic cell. Note that

since this calculation involves complex values, both real and imaginary values

are computed. For the calculation of the vector C, this is simply two additions.

For the subtraction then multiplication by W n in the calculation of D, the

multiplication of two complex values produces a more complicated expression.

C re = A re + B re;

C im = A im + B im;

D re = (W re * (A re - B re)) - (W im * (A im - B im));

D im = (W re * (A im - B im)) + (W im * (A re - B re));

Figure 7.50: The data parallel code for the FFT.

The code in Figure 7.50 is executed on the vectors of length N for the

required log2(N) iterations to produce the final DFT values. From this data

parallel code, the circuit in Figure 7.51 is extracted.

While this is the bulk of the algorithm, the generation of the values

for the W vector have not yet been addressed. The vector W is also a com-

plex quantity with real and imaginary components. Equation 7.10 shows the

expanded version with transcendental functions sine and cosine.

151

−

*

+

a_re a_im b_re b_im W_re W_im

c_re c_im d_re d_im

+ −

− +

* **

Figure 7.51: The extracted FFT circuit.

152

W n = cos(2πn/N) − i sin(2πn/N) (7.10)

The vector W contains N/2 values which are reused throughout the

calculation. This vector should be precomputed at the beginning of the cal-

culation. While the reconfigurable hardware may easily be employed in this

computation, this may or may not be the best approach. Because of the small

size of this vector it is possible that the host may be profitably employed in

this portion of the computation.

Also note that the vector W changes with each stage of the computation.

Unfortunately, no simple access method for producing this new W vector is

possible. While the new vector of length N/2 can be generated using two

stride() functions, this will require some physical rearranging of data. Again,

since this operation is fairly simple, it may be desirable to employ the host in

this manipulation.

Finally, as with the standard FFT calculation, the data is produced in

a peculiar order. This order is often referred to as bit reversed order. Here,

the actual index of the result is determined by reversing the bits of the vector

index of the values produced. For example, in Figure 7.48 the second trans-

formed value in location “1” is denoted F(4). The index “4”, or binary (100)

is determined by reversing the bits in the binary value of its actual location, 1,

or binary (001).

Unfortunately, these is no obvious data access pattern that would permit

striding to be used to reorder the data. Again, it is likely that this function

153

would be best performed by the host processor. Note that the solution involves

the swapping of pairs of elements in the vector and is a fairly simple process.

The complete algorithm for the FFT using this approach has been imple-

mented and simulated. Using the data from the DFT example in Figure 7.44,

a result identical to Figure 7.45 is produced. Because the values are identical,

they are not reproduced here.

7.5.3 The FFT in 2D

While the Discrete Fourier Transform is defined to act on a vector of digitized

waveform data, it is not strictly limited to one dimensional signal data. The

DFT may also be applied to image processing tasks. The use of a Fourier repre-

sentation for digitized images presents many interesting possibilities for image

enhancement. The image processing functions which use a spectral represen-

tation are often difficult to perform using a standard image representation.

To produce the two dimensional DFT of a digitized image, the DFT

of each row of pixels in the image must be taken. The result of these DFT

operations is then processed by taking the DFT of these values by columns,

rather than by rows. (For a more detailed analysis, as well as some interesting

processing techniques based on digital images represented in the frequency

domain, the reader is referred to Gonzalez and Wintz [43].)

For an NxN image, 2N transforms are required. If the FFT is em-

ployed the complexity of the complete two dimensional image FFT calculation

is O(2N2 log2(N)). For even moderately sized images, this represents a signif-

icant amount of calculation.

154

The data parallel implementation of the FFT is used to compute the

two dimensional FFT of a simple test image. Figure 7.52 shows a 256x256

pixel image where each pixel was represented by eight bits, giving 256 distinct

shades of grey. The processed image shows the spectral pattern produced by

this synthetic image.

It should be noted that this spectral image is displayed in a somewhat

unconventional manner. First, the image was translated so that the “inter-

esting” portion of the image is moved to the center. This translation can be

viewed as dividing the image into four quadrants and swapping diagonal quad-

rants. This places the pixels which were originally in the corners at the center

of the image.

Second, the values of the pixels are scaled in a logarithmic manner.

This is because the values produces by the FFT tend to be logarithmically

distributed. If it were not for this scaling, the image would appear more as

a small white dot in the center of the frame. Finally, the image represents

only the real portion of the processed image. The phase information in the

imaginary portion of the processed image, while important, does not contain

information which is as meaningful when viewed as an image.

Figure 7.53 contains a more realistic image and its Fourier transform.

Again the transform image is a scaled version of the real portion of the trans-

formed image.

This two dimensional image DFT has some computational features which

should be mentioned. First, since all of the transforms are of a fixed length N ,

the W vector need only be calculated once. The versions of the W vector used

155

Figure 7.52: A square image and its 2D FFT.

Figure 7.53: A more complex image and its 2D FFT.

156

in each of the log2(N) stages of the calculation may also be precomputed and

stored separately for repeated use.

Also, the rearranging of the output data via the bit reversal method can

be postponed until after the complete image is processed. Since each row in

the image will be ordered in the same manner, the calculation in the second

dimension, while performing the computations in a bit reversed order, still

performs all of the necessary calculations.

Finally, some mention should be made of the method for transforming

the frequency domain version of a signal or image back into the standard digi-

tally sampled representation. While this is not necessary for many applications,

others which use the DFT as an intermediate step in processing a signal will

require some means of returning the signal to its original representation.

The inverse transform is very similar to the forward transform. In fact,

the inverse transform is nothing but the forward transform, with two additional

processing steps. These two additional processing steps are the taking of the

complex conjugate of each point and dividing the result by N . This procedure

returns data in the frequency domain to data in the sampled domain. This

inverse transform may be easily implemented by modifying the FFT code.

7.5.4 Performance

From Figure 7.49, we see that each stage in the FFT processes vectors of

length N/2. These vectors are processed for log2(N) stages. This gives a total

of (N/2) log2(N) data elements processed.

Assuming that throughput is maintained such that one data element

157

per cycle is processed, the time to calculate a FFT of length N is given by

Equation 7.11, where f is the clock frequency of the system in Hertz (Hz).

Tfft = (N/2f) ∗ log2(N) (7.11)

From this analysis, the reconfigurable hardware should be able to pro-

cess a 1024 point FFT in approximately 0.1 milliseconds, assuming a 50 MHz

clock. Sohie and Chen [116] give performance benchmarks for modern digital

signal processors. These processors typically perform an identical calculation

in one to two milliseconds. This predicted order of magnitude increase in

performance is especially significant when one considers that the processors

executing the FFT benchmarks are not standard microprocessors, but digital

signal processors which are optimized for operations such as the FFT.

This order of magnitude increase in performance should allow a two

dimensional Fourier transform to be calculated at rates approaching that of

standard video. Assuming a video rate of 30 frames per second, the reconfig-

urable system is able to produce the two dimensional Fourier transform of a

256x256 pixel video signal in real time while executing at a system clock speed

of just over 15 MHz. A 512x512 signal can be processed in real time if a system

clock speed of just of 70 MHz can be achieved. The ability to process video

data in this manner should permit filtering and enhancement of video images

not normally available using standard techniques.

158

7.6 The Livermore FORTRAN Kernels

So far, all of the algorithms examined have a common theme. All exhibit

relatively large amounts of data parallelism and are easily vectorized. All of the

algorithms examined so far, in fact, have been implemented at some time using

custom hardware. For reconfigurable architectures to be truly useful, they must

be able to perform general purpose computations such as those commonly found

on instruction set architectures. To better examine the feasibility of general

purpose computing, codes from existing applications, particularly those from

high performance machines, should be examined.

One such collection of codes is the Livermore FORTRAN Kernels or

LFK [90] [33]. The LFK suite is selected for implementation on reconfigurable

hardware for several reasons. First, the LFK is a widely used tool to measure

CPU performance. This permits comparison of results to a wide range of

existing architectures.

Second, the LFK are composed of a number of tests which include a wide

range of computational structures. While some of these structures are used to

measure the peak performance of a system, others are constructed specifically

to limit performance. This permits an examination of architectural weaknesses

as well as strengths.

Finally, the LFK are relatively compact and self contained. This allows

their simulation on models of proposed hardware. Performance information

gained from such simulations is valuable in guiding the design.

159

7.6.1 The Kernel Code

The LFK are a collection of 24 relatively small fragments of code. Each of

these code fragments contains a CPU intensive loop, giving the test suite its

informal name, “the Livermore Loops”. The LFK were originally developed

in 1970 to test the code generated by compilers. Over time, these codes have

become a benchmarking tool for new supercomputer systems.

100

200

50

150

7 1 9 3 8 18 21 22 4 12 10 2 14 6 19 23 5 11 20 17 16 15 13 24

Loop Number

M
F

LO
P

s

Fully

Vectorizable

Partially

Vectorizable

Unvectorizable

Unstructured

Figure 7.54: Performance sorted by MFLOPs for a CRAY X-MP.

As the LFK have evolved into a benchmarking tool, new loops have

been added to exercise specific features of both compilers and hardware. The

number of loops has grown from the initial 12 to the current 24.

The kernels in this study were converted by hand from the original

FORTRAN to a data parallel version of the C language. Most of the transfor-

mations performed in translating the source code are fairly simple, and could

160

conceivably be performed by a sufficiently intelligent compiler.

To verify the accuracy of the translated kernels, the data parallel C code

was simulated. The results from this simulation were verified against results

from a standard C version of the LFK [35].

It should be noted that the LFK are specified for high accuracy float-

ing point arithmetic. While some work is being done on the implementation

of floating point arithmetic in reconfigurable logic [32], it is understood that

using the technology available today, a very large RPU would be required to

implement these functions. While numeric accuracy is important, it is the

computational structures in the LFK which are of primary interest. It is these

structures, not numeric accuracy, which have the greatest impact on perfor-

mance.

Figure 7.54 plots the performance of the 24 Livermore Fortran Kernels

run on a CRAY X-MP using the CFT77 3.0 compiler [103]. The numbers are

listed in MFLOPs and are sorted by performance. From this sorted graph of

the LFK, four performance ranges can be identified. These are:

• Fully vectorizable

• Partially vectorizable

• Unvectorizable

• Unstructured

In general, kernels in each of these regions present different computa-

tional challenges. These will be discussed in more detail as the kernels are

161

implemented. For brevity, only representative kernels from each region are dis-

cussed. Kernels were chosen primarily for their simplicity in illustrating the

particular computational structures.

7.6.2 Fully Vectorizable Loops

Kernels in the fully vectorizable category typically perform the highest on vec-

tor supercomputers. These kernels are characterized by being easily vectorized

as well as providing enough work to occupy multiple functional units.

Loop 1: Hydrodynamic Code

Loop 1 is a fragment from a hydrodynamic simulation. The original FORTRAN

code for this loop is shown in Fig. 7.55. This loop is easily vectorizable and

can make concurrent use of several functional units.

Do 1 k = 1,n

1 X(k) = Q + (Y(k) * ((R * Z(k+10)) + (T * Z(k+11))))

Figure 7.55: The original FORTRAN code for Loop 1.

The translation of this algorithm to data parallel form is shown in Fig-

ure 7.56. Because of the structure and simplicity of this loop, the similarities

between the FORTRAN code, the algorithm and the data parallel code are

clear.

Z10 = delta(Z, 10);

Z11 = delta(Z10, 1);

X = q + (Y * ((r * Z10) + (t * Z11)));

Figure 7.56: The data parallel code for Loop 1.

162

Figure 7.57 shows the RPU circuit extracted from the dataflow graph

of this code. This circuit makes use of 5 functional units, and has a latency of

5 functional units.

*

Y Z

X

q

t r

*

*

+

+

Figure 7.57: The configured circuit for Loop 1.

Two aspects of this circuit may require further explanation. First, only a

single delta functional unit is employed, in spite of the use of two such operators

in the code. Because the initial vector has a fixed index offest, the memory

system is assumed to begin its access of the vector Z at this offset. This reduces

the size of the circuit as well as eliminating data which are never used in the

calculation.

The second interesting feature of this circuit is the use of the constants q,

r and t. One alternative would be to use RPU bandwidth and make them input

163

vectors. Instead, they are embedded in the circuit as constant inputs to the

functional units. These constant inputs may also allow further opportunities

for circuit optimizations.

Estimating performance of this circuit is fairly simple. Assuming suf-

ficient memory bandwidth and a clock speed of 50 MHz, the processor will

produce one result per clock cycle, neglecting latency. Since all functional

units are kept busy on each cycle, approximately 250 million operations per

second are performed. If the functional units all perform floating point opera-

tions, this corresponds to 250 MFLOPs. Even at this modest clock speed, this

exceeds the rate of computation of the CRAY X-MP.

Loop 3 - Inner Product

The second fully vectorizable loop is an inner product calculation. This is

a multiply-accumulate function found in many applications, including matrix

arithmetic. Because of the widespread use of this type of calculation, most

supercomputers are especially efficient at its execution. Figure 7.58 gives the

original FORTRAN code for this kernel.

Do 3 k = 1,n

3 Q = Q + (Z(k) * X(k))

Figure 7.58: The original FORTRAN code for Loop 3.

The data parallel version of the code is shown in Figure 7.59. The

accumulate operation used to produce Q is implemented as a parallel prefix

scan operator. This produces a vector Q containing the accumulated values,

with the last element containing the final sum.

164

Q = add-scan(Z * X);

Figure 7.59: The data parallel code for Loop 3.

The circuit extracted from this data parallel code is shown in Fig-

ure 7.59. This circuit is fairly simple, containing only two functional units.

The memory bandwidth required is also fairly modest. Two vector inputs and

a vector output are required.

*

ZX

+

Q

Figure 7.60: The configured circuit for Loop 3.

At a rate of 50 MHz, neglecting overhead, this circuit performs 100 mil-

lion operation per second. This is somewhat less than the CRAY X-MP. The

very small number of functional units indicates very little exploitable parallel-

ism. Hence the modest performance.

This test, however, is intended to gauge the efficiency of an accumula-

tion operation. A vector architecture with no direct support for this operation

would have to resort to slower and more complex schemes to perform the ac-

cumulation. The availability of custom operations like add-scan() and their

165

efficient implementation in reconfigurable logic provide respectable levels of

performance for this common operation.

7.6.3 Partially Vectorizable Loops

The next group of kernels perform at a level somewhat below that of the fully

vectorizable kernels. These loops are referred to as partially vectorizable loops.

In these kernels, the ability to use the vector units fully is reduced. While

these loops do not have the performance levels of the fully vectorizable loops,

their levels of performance are still substantial, but only a fraction of the peak

performance achieved by the fully vectorizable loops.

Loop 12 - First Difference

Loop 12 is a first difference calculation. The original FORTRAN for this cal-

culation is shown in Figure 7.61. Despite its relatively low performance, this

loop is fairly simple and is easily translated to data parallel code.

Do 12 k = 1,n

12 X(k) = Y(k+1) - Y(k)

Figure 7.61: The original FORTRAN code for Loop 12.

Figure 7.62 gives the translated data parallel code for the first difference

calculation. The use of the delta() function provides the offset version of the

vector Y , saving input bandwidth.

Y1 = delta(Y, 1);

X = Y - Y1;

Figure 7.62: The data parallel code for Loop 12.

166

The circuit extracted from this code is shown in Figure 7.63. This

is perhaps the simplest circuit produced by the LFK. While the algorithm

contains a large amount of data parallelism permitting vectorizations, there is

only a single arithmetic functional unit used by the calculation. At a clock

rate of 50 MHz, neglecting overheads, this calculation proceeds at a rate of 50

million operation per second. This is similar to the rate achieved by the CRAY

X-MP.

Y

X

−

Figure 7.63: The configured circuit for Loop 12.

The performance of this loop is reduced because of a lack of work for

the functional units. Assuming available memory bandwidth, it is possible to

further accelerate this algorithm. N configurations identical to that shown in

Figure 7.63 could be replicated within the RPU. The input vector Y could

be split into N parts, each performing a first difference independently. This

approach can increase performance by a factor of N , at the cost of increased

bandwidth.

167

Loop 22 - Planckian Distribution

Loop 22 is from a Planckian distribution program. Here, the computation rate

is slowed by conditional execution. Figure 7.64 gives the original FORTRAN

implementation. Some vector processors provide special hardware for this sit-

uation. This hardware produces a bit vector called a vector mask from the

conditional statement. This bit vector is used to selectively perform operations

later in the computation. A similar technique to vector masking is used by the

reconfigurable hardware implementation.

Do 22 k = 1,n

Y(k) = 20.0d0

if (U(k) .lt. 20.0d0 * V(k)) Y(k) = U(k) / V(k)

W(k) = X(k) / (dexp(Y(k)) - 1.0d0)

22 Continue

Figure 7.64: The original FORTRAN code for Loop 22.

Despite the conditional statement, the data parallel code is again a

fairly simple translation from the original FORTRAN. Figure 7.65 gives the

data parallel code for this loop.

if (U < (V * 20.0))

Y = (U / V);

else

Y = 20.0;

W = X / (exp(Y) - 1.0);

Figure 7.65: The data parallel code for Loop 22.

In this implementation, the conditional statement provides two alter-

nate values for the elements in Y , depending on the result of the conditional

168

statement. This permits a parallel computation of the two values, with the

proper result being selected.

Figure 7.66 gives the circuit extracted from the data parallel code. The

comparison operator (<) takes two arithmetic inputs and produces a single bit

output. This output is used as a select line to a multiplexer. This multiplexer

selects the appropriate value of Y , which will be used later in the calculation.

This approach can be viewed as building a vector mask “on the fly”.

/

/ *

<

−

exp

X U V

W

20.0

20.0

1.0

Figure 7.66: The configured circuit for Loop 22.

While this is a more complex loop, only 5 functional units, not including

the comparison or the the multiplexer, are used. This assumes that the exp()

169

function is counted as a single functional unit. Depending on the implemen-

tation, this operator may be composed of other simpler arithmetic and logical

operations.

Assuming a clock speed of 50 MHz, this implementation achieves ap-

proximately 250 million operations per second. This is almost four times the

rate of the CRAY X-MP reference machine. This increase is attributed to the

ability to efficiently perform conditional operations.

7.6.4 Unvectorizable Loops

The kernels in this performance range are typically unvectorizable and are un-

able to make extensive use of vector hardware. Since they are not able to make

use of the vector processing facilities that helped enhance performance in the

previous loops, their performance is not only considerably lower, but also more

uniform. These algorithms are typically forced to use the non-vector portion

of the CPU, thus testing the performance of this portion of the architecture.

Most of these loops are unvectorizable because of data dependencies

introduced by recurrence equations. While difficult or impossible to vectorize

using traditional fixed instruction architectures, the use of structures such as

parallel prefix scan operators open up new possibilities for these functions.

Loop 5 - Tridiagonal Elimination

Loop 5 is a fragment of code used in tridiagonal elimination. The original

FORTRAN code as shown in Figure 7.67 contains a data dependency in X

that prohibits vectorization. This kernel typifies a class of equations known as

first order linear recurrence equations. Several approaches to parallelizing this

170

class of equations have been proposed [69] [67] [37].

Do 5 k = 1,n

5 X(i) = Z(i) * (Y(i) - X(i-1))

Figure 7.67: The original FORTRAN code for Loop 5.

Figure 7.68 gives the dataflow graph for this equation. While simple

recurrences can be implemented with a single parallel prefix operation, this

recurrence is more complicated. The feedback path through two functional

units eliminates the possibility of a simple pipelined approach.

*

−Z

X

Y

Figure 7.68: The dataflow graph for Loop 5.

The approach demonstrated here makes use of the fact that the com-

puted values are actually independent if previously computed values are sub-

stituted into the subsequent equations. The first four values of X produced by

this substitution are shown in Equation 7.12.

X1 = Z1 ∗ (Y1 − X0) (7.12)

= Z1Y1 − Z1X0

171

X2 = Z2 ∗ (Y2 − X1)

= Z2Y2 − Z2X1

= Z2Y2 − Z2Z1Y1 + Z2Z1X0

X3 = Z3 ∗ (Y3 − X2)

= Z3Y3 − Z3Z2Y2 + Z3Z2Z1Y1 − Z3Z2Z1X0

X4 = Z4Y4 − Z4Z3Y3 + Z4Z3Z2Y2 − Z4Z3Z2Z1Y1 + Z4Z3Z2Z1X0

From this form, it is clear that all values of Xi may actually be calculated

in parallel, given the initial condition X0. Unfortunately, a naive implemen-

tation of this fully parallel approach results in an O(N3) complexity for the

algorithm.

While the direct implementation of the expanded calculation results in

an undesirably high complexity, it is clear that there is still much parallelism in

the representation. What is desirable is a compact mathematical representation

for this expansion which can be easily manipulated. Given the regular structure

of the elments in the calculation, a standard mathematical series representation

of each value Xn should be useful. Equation 7.13 gives the series representation

for Xn.

Xn =
n∑

i=1

− n∏

j=i

−Zj

Yi

+ X0

n∏
i=1

−Zj (7.13)

This concise representation exposes the parallelism in the equation,

while maintaining a form which permits easy manipulation.

Table 7.2 shows the mathematical notation for series calculation and

the corresponding data parallel programming language construct. Other series

172

calculation expressions and corresponding scan operators also exist. Binary

series expressions and their corresponding boolean scan operations are one class

of examples. For the purposes of this derivation, however, only the sum and

product series are necessary.

Language
Expression Construct

Yn =
n∑

i=1

Xi Y = add-scan(X)

Yn =
n∏

i=1

Xi Y = mult-scan(X)

Table 7.2: Mathematical expressions and their language constructs.

Using the correspondence between the standard mathematical opera-

tions for series calculation and their data parallel constructs, mathematical

representations of algorithms involving series calculations can be directly trans-

formed into data parallel algorithms containing only vector and parallel prefix

operations.

While in a form of sums and products, the parallel prefix operators

strictly correspond to series with fixed indices. Before making use of the repre-

sentation in Equation 7.13, some transformations must be performed. First, the

product portion of the equation must be modified to change the starting index

to a constant value. This is most easily accomplished by multiplying by unity

in the form of a ratio of the missing product terms, as shown in Equation 7.14.

173

Xn =
n∑

i=1

i−1∏
k=1

−Zk

i−1∏
k=1

−Zk

· −
n∏

j=i

−Zj

Yi

+ X0

n∏
i=1

−Zj (7.14)

By merging the two products in the numerator into a single product and

moving this common expression outside of the summation, the reduced series

in Equation 7.15 is derived.

Xn =
n∏

j=1

−Zj

n∑
i=1

−Yi

i−1∏
k=1

−Zk

+ X0

 (7.15)

Finally, the index of the product in the denominator must be brought

up from i − 1 to i. This is most easily accomplished by multiplying by unity

in the form of −Zi/ − Zi. This results in the final form of the expression as

shown in Equation 7.16.

Xi =
n∏

i=1

−Zi

n∑
j=1

ZjYj

j∏
k=1

−Zk

+ X0

 (7.16)

To verify that this form of the equation is the same as the original

expansion, the value of X4 is calculated using this equation and returned to its

original form. Equation 7.17 demonstrates that the transformed series produces

the same values as the original recurrence equation.

X4 = Z4Z3Z2Z1

[
Z4Y4

Z4Z3Z2Z1
+

Z3Y3

−Z3Z2Z1
+

Z2Y2

Z2Z1
+

Z1Y1

−Z1
+ X0

]
(7.17)

174

=
Z4Z3Z2Z1 · Z4Y4

Z4Z3Z2Z1

+
Z4Z3Z2Z1 · Z3Y3

−Z3Z2Z1

+
Z4Z3Z2Z1 · Z2Y2

Z2Z1

+

Z4Z3Z2Z1 · Z1Y1

−Z1

+ Z4Z3Z2Z1X0

= Z4Y4 − Z4Z3Y3 + Z4Z3Z2Y2 − Z4Z3Z2Z1Y1 + Z4Z3Z2Z1X0

The expression in Equation 7.16 may now be converted to data parallel

code by simply substituting the appropriate scan operations for the sums and

products. Vector operations are used for the multiplication, division and addi-

tion operations. Figure 7.69 contains the data parallel code for the recurrence

equation.

X = mul-scan(-Z) * (add-scan((Z * Y) /

mul-scan(-Z)) + x0)

Figure 7.69: The data parallel code for Loop 5.

From this data parallel code the circuit in Figure 7.70 can be extracted.

The ability to use non-standard operators such as scans has permitted a pipelined

version of this kernel, greatly improving performance.

This circuit uses 7 functional units and two vector inputs and a single

vector output. At 50 MHz, this circuit calculates 350 million operations per

second. While the re-casting of the algorithm has added these extra functional

units, thereby boosting the number of operations, the throughput of this circuit

is still superior to other implementations, including those on supercomputers.

There are, however, some drawbacks to this approach. One is numer-

ical stability. The parallel version of the algorithm requires that the product

of all elements in the vector Z must be multiplied. This product must be

representable by the hardware.

175

+

/

*

+

*

*

−

Z Y

X0

X

Figure 7.70: The configured circuit for loop 5.

176

Additionally, the introduction of the division operator produces the pos-

sibility of a divide by zero error. As long as Z is non-zero, this possibility is

eliminated. Mapping all zero elements of Z to very small values near zero is one

solution. Another is detecting the zero values and re-setting the entire circuit

when they occur. Because a zero value in Z forces the output to zero, it can

be viewed as a reset condition, similar to starting a new vector calculation.

Finally, the author knows of no automated method for translating re-

currence equations to data parallel code. It is hoped that the performance

gains made available by this technique will spur advances in this area.

Loop 11 - First Sum

Loop 11 is a first sum calculation. As in loop 5, a data dependency in the form

of a recurrence is responsible for the low performance. Figure 7.71 give the

original FORTRAN code for this procedure.

X(1) = Y(1)

Do 11 k = 2,n

11 X(k) = X(k-1) + Y(k)

Figure 7.71: The original FORTRAN code for Loop 11.

Unlike the recurrence equation in loop 5, the first sum in this kernel is

very simple. It is essentially the definition of the add-scan() operator. Fig-

ure 7.72 gives the data parallel code for this kernel.

X = add-scan(Y);

Figure 7.72: The data parallel code for Loop 11.

177

The circuit extracted from this code, as shown in Figure 7.73 is trivial.

A single add-scan operator is used. A single vector input Y is used to produce

a single vector output X.

+

Y

X
Figure 7.73: The configured circuit for Loop 11.

While providing a vector solution for this algorithm, the first sum suffers

a similar performance limitation to loop 12, the first difference kernel. Since

only a single functional unit is used, the number of operations at 50 MHz is only

50 million per second. Unlike the first difference, the dependency eliminates the

possibility of replicating the circuit to perform vector calculations in parallel.

Even this low rate of calculation, however, still exceeds supercomputer levels

of performance.

7.6.5 Unstructured Loops

These kernels are the lowest in performance on the CRAY X-MP reference

machine. As with the unvectorizable loops, they are unable to take advantage of

the special vector hardware. Additionally, these kernels contain structures that

further reduce performance, even for the non-vector portion of the processor.

For lack of a better term, these loops will be referred to as unstructured.

178

They are characterized primarily by the presence of unstructured control, usu-

ally in the form of goto statements, as well as complicated array indexing

schemes.

Some of these loops actually exhibit a large amount of parallelism. It

is often the way in which the algorithm is expressed, rather than any limita-

tion in the underling algorithm, that reduces performance. For these reasons,

some of these loops are better test of FORTRAN compiler optimizers than the

underlying processor architecture.

Loop 24 - First Minimum

Loop 24 is selected as a representative of the unstructured loops because it has

a deceptively simple implementation, while having the lowest performance of

all 24 loops on a CRAY X-MP. The original FORTRAN code for this kernel is

given in Figure 7.74.

max24 = 1

Do 24 k = 2,n

24 if (X(k) .lt. X(max24)) max24 = k

Figure 7.74: The original FORTRAN code for Loop 24.

An attempt to translate this algorithm into data parallel code reveals

some of its limitations. First, this code uses a conditional operator, which in-

terferes with vectorization. Next, it performs an operation involving only two

scalar quantities. Finally, X is indexed by a scalar quantity which changes

unpredictably. All of these factors combine to dramatically reduce the perfor-

mance of this kernel.

179

The goal of this loop, however, is to find the location of the minimum

value in the vector X. Constructing a data parallel solution will require more

than a simple translation from the original FORTRAN specification of the

algorithm.

Min = min-scan(X);

Min1 = delta(Min, 1);

Diff = Min1 < Min;

Index = add-scan(1);

M = max-scan(Index * Diff);

Figure 7.75: The data parallel code for Loop 24.

Figure 7.75 gives the data parallel code for this algorithm. The struc-

tures used require some explanation. First, since we are attempting to find the

minimum value in the array, a min-scan() function is employed. This produces

a vector Min containing the smallest value found up to that point.

This minimum value vector would be useful, except for the case of mul-

tiple identical minima. This algorithm requires the first occurrence of this

minimum. The less-than (<) operator is used to compare neighboring ele-

ments in the Min vector. This locates the places where a new minimum has

been found.

The add-scan(1) is used to produce a sequence of integers 1, 2, 3,

Since there is no looping control structure in the data parallel code, this is

necessary to produce the index value.

The index values created by this add-scan() operator are then multiplied

by the results of the comparison. When a new minimum is found, this value is

180

“1”, passing the index value. Otherwise the result of the comparison is zero,

passing a zero as the result of the multiplication.

This produces a stream containing the index of the new minima indices

and zeros. A max-scan operator will propagate the index of the first occurrence

of the vector minima to the vector M . The last element in M contains the index

of the vector minimum. Figure 7.76 give the dataflow graph extracted from

this data parallel code.

+<

min

X

max

*

1

M

Figure 7.76: The configured circuit for Loop 24.

While a substantial modification of the original algorithm, this version

is fully pipelinable and executes at approximately 200 million operations per

second. While much of this figure is due to the additional functional units,

this implementation still produces the desired result in approximately N clock

181

cycles for a vector of length N .

A final note on unstructured algorithms. Many may not be suitable

for reconfigurable machines. Unstructured access to vector data is a problem.

Vector indexing of the form X[Y [n]] is particularly difficult. Without special

hardware support in the memory system, this type of calculation will almost

certainly involve the host.

7.6.6 Performance

Table 7.3 gives an analysis of the performance of the seven kernels implemented.

The estimates for the performance of the reconfigurable machine is based on

an 50 MHz clock. This table is intended to illustrate the relatively high level

of performance of the reconfigurable architecture. Too much emphasis should

not, however, be placed on direct numerical performance comparisons.

Recall that most algorithms have been modified to take advantage of

structures such as scan operators that are available to the reconfigurable sys-

tem. Other algorithms, such as the recurrence equation in Loop 5, have been

substantially transformed. These transformations make comparisons especially

difficult. The goal here is merely to show that the reconfigurable architecture

can perform the sorts of tasks usually performed by supercomputers at rela-

tively high level of performance.

Perhaps not surprising, the algorithms that fared well on supercomput-

ers also fared well on the reconfigurable machine. What is more surprising is

the high levels of performance achieved by some of the loops which performed

poorly on the CRAY X-MP, the supercomputer reference machine.

182

Loop Vector Vector Func. Estimated CRAY X-MP
Num. Inputs Outputs Latency Units MFLOPS MFLOPS

1 2 1 5 5 250 160
3 2 1 2 2 100 138
12 1 1 2 1 50 63
22 3 1 5 5 250 68
5 2 1 6 7 450 14
11 1 1 1 1 50 14
24 1 1 5 5 200 3

Table 7.3: The LFK performance parameters.

While many of the algorithms are easily implementable and exhibit very

high performance, some structures are still problematic. First, simple recur-

rences can be implemented efficiently using scan circuits. Currently, however,

no simple algorithm exists for translating more complex recurrences into these

circuits. Secondly, unstructured algorithms, particularly those which make use

of indirect array indexing, are not well suited to reconfigurable logic. Using the

host to vectorize these types of array accesses before they are submitted to the

RPU may be a solution for some algorithms.

The implementation of these selected portions of the LFK demonstrates

the feasibility of general purpose supercomputing using reconfigurable logic.

While not a solution to all problems, the results for a large class of common

computational structures is promising. Furthermore, it should be noted that

the algorithms in the LFK are taken from real applications, written for tradi-

tional architectures. It is possible that new classes of algorithms which exploit

the unique features of reconfigurable logic will provide even higher levels of

performance for a larger class of problems.

Chapter 8

Summary

In this dissertation, an approach to high performance computing based on

reconfigurable logic has been described. At the device level, a cellular recon-

figurable logic architecture has been described. This device architecture uses

a hexagonal array of three-input / three-output cells to support the configura-

tion of pipelined arithmetic and logic circuits. By interfacing these devices to a

dedicated memory system and a host processor, a high performance computing

system may be constructed.

Perhaps more importantly, an existing software methodology has been

used to program this system. By using a data parallel programming language,

portions of the code containing large amounts of data parallelism are easily

identified. The data flow graph of these portions of the code may then be

mapped directly onto the reconfigurable hardware for execution.

Two additions to this software model have also been introduced. First,

the use of parallel prefix or scan operators allows various accumulation op-

erations to be performed efficiently. While scan operators have been shown

to be powerful programming constructs on other high performance architec-

tures, their implementation has suffered from inefficiency. In the approach

demonstrated in this dissertation, scan functions are implemented with the

183

184

performance and complexity on par with other standard arithmetic and logical

operators.

The second software construct introduced as an addition to the data

parallel programming model is mixed valued striding. This construct is a simple

extension of traditional vector striding. Rather than allowing only integral

strides, mixed values are permitted. This allows richer access patterns to data

stored in arrays.

Since mixed valued striding is a direct extension of existing striding

techniques, hardware support may be provided at a small incremental cost.

With direct hardware support for this technique, longer data streams can be

produced, reducing the overhead usually associated with calculations involving

shorter vectors. It is believed that this technique is also be of value to other

vector processing architectures, including digital signal processors.

Finally, several algorithms have been implemented and simulated. These

include popular algorithms such as the Fourier transform and neural networks,

as well as portions of the Livermore FORTRAN Kernels. These examples

demonstrate that computationally intensive algorithms may be specified us-

ing existing software methodologies and executed at supercomputer levels of

performance. Several of the Livermore FORTRAN kernels also indicate that

computational structures which are problematic for other high performance

architectures fare well on fine grained reconfigurable hardware. Table 8.1 sum-

marizes some of the architectural parameters required by the algorithms simu-

lated in this study. Similar results for the Livermore FORTRAN Kernels may

be found in Table 7.3 in the previous chapter.

185

Input Output Functional
Ports Ports Units

Cellular Automata 3 1 20
String Matching 5 1 7
Mandelbrot Set 3 3 24
Neural Network 2 1 7
DFT 2 2 15
FFT 6 4 10

Table 8.1: System requirements of the algorithms.

As with other high performance architectures, memory bandwidth is

an issue. One of the strengths of this architecture is the ability to perform

multiple operations on input data before having to store a result to memory. In

the case of the selected Livermore FORTRAN Kernels, a single vector output

is generated from one to three input vectors. The bandwidth requirements

are somewhat higher for the other algorithms in this study, but all may be

implemented using standard design techniques.

In all cases studied, the performance of the reconfigurable hardware

was at least comparable with modern supercomputers. In some cases, the

performance was considerably higher. What makes these results particularly

significant is that the hardware necessary to produce a reconfigurable system

of the type described in this dissertation should be several orders of magnitude

smaller and less costly than existing supercomputers.

While it is difficut to obtain a precise estimate of the cost of such a recon-

figurable system, some rough estimates can be made. Currently, reconfigurable

logic tends to be approximately 10 to 100 times less dense than custom logic.

186

An algorithm which can be implemented in a single custom logic device will

require an RPU with 10 to 100 devices using similar fabrication technologies. It

is expected that an RPU may be constructed on a single, standard printed cir-

cuit board without using any exotic packaging technology. The memory system

would be incrementally more expensive than that of a typical workstation.

If it is assumed that the reconfigurable logic devices used to construct

the RPU are high-volume commodity parts, the cost of a high performance

reconfigurable system should be somewhat more than a workstation. It is also

believed that this approach to computing will benefit more from advances in

device technology than traditional processors.

8.1 Future Directions

This research has concentrated on the use of reconfigurable logic for general

purpose computing. In particular, the use of high level languages has been

addressed. Perhaps because this is such a relatively new field of study, many

areas of future research present themselves.

First, the cellular architecture of reconfigurable logic arrays provides a

platform for work in wafer scale technology and fault tolerance. When large

cellular arrays are fabricated, faulty cells may be bypassed using various tech-

niques. The possibility of using software techniques alone to produce function-

ally correct circuits in the presence of faulty cells is especially interesting. This

should permits larger reconfigurable logic devices to be produced at a lower

cost.

Another future direction of research involves the construction of the

187

macrocells used by the system. Implementation of macrocells, particularly

arithmetic circuits, presents some unique challenges. Unlike typical hardware

design environments, the cellular array presents a constrained set of resources.

Both logic and routing are fixed and finite quantities. This quantization, par-

ticularly the quantization of routing resources, provides a new framework for

circuit design.

Another potential area of research is multiprocessor support. While

a uniprocessor model of computation is presented here, the use of multiple

reconfigurable logic coprocessors in conjunction with a multiprocessor system

is possible. While some research in this area is currently being performed,

many issues, especially software issues, are still unresolved.

From an architectural perspective, this approach to computation using

reconfigurable logic makes use of some of the dataflow principles explored in the

1980s [24, 38, 4]. Unlike the dynamic dataflow architectures proposed for this

model of computation, the approach taken here is more akin to static dataflow

or data driven architectures [25, 71, 70]. The ability to efficiently support such

a model of computation represents a step away from so-called von Neumann

model of computation and its associated control structures [8].

Because of the use of dataflow principles, other less popular program-

ming languages may turn out to be well suited to reconfigurable logic based

machines. Dataflow and functional programming languages in particular seem

to be promising.

The inherent flexibility of reconfigurable logic permits the hardware to

be mapped to the algorithm, rather than the algorithm to the hardware. The

188

resulting efficiencies have been demonstrated to produce high levels of perfor-

mance from relatively small systems. As the circuit density of reconfigurable

logic devices continues to increase, it will become easier to build larger systems.

The ability to program these machines using high level languages should help

to make these systems competitive with existing high performance computers.

Bibliography

[1] A. Abbott, P. M. Athanas, L. Chen, and R. L. Elliot, “Finding lines

and building pyramids with spalsh 2,” in IEEE Workshop on FPGAs for

Custom Computing Machines (D. A. Buell and K. L. Pocek, eds.), (Los

Alamitos, CA), pp. 155–163, IEEE Computer Society Press, April 1994.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques

and Tools. Addison-Wesley Publishing Company, 1986.

[3] Algotronix, Ltd., CAL1024 Datasheet, 1990.

[4] Arvind, D. E. Culler, and G. K. Maa, “Assessing the benefits of fine-

grain parallelism in dataflow programs,” in Supercomputing ’88, pp. 60–

69, 1988.

[5] P. M. Athanas, “An adaptive machine architecture and compiler for dy-

namic processor reconfiguration,” Tech. Rep. LEMS-101, Brown Univer-

sity, Division of Engineering, February 1992.

[6] P. M. Athanas, “A functional reconfigurable architecture and compiler,”

Tech. Rep. LEMS-100, Brown University, Division of Engineering, Febru-

ary 1992.

[7] P. M. Athanas and H. F. Silverman, “Processor reconfiguration through

instruction-set metamorphosis,” IEEE Computer, vol. 26, pp. 11–18,

189

190

March 1993.

[8] J. Backus, “Can programming be liberated from the von Neumann style?

a functional style and its algebra of programs,” Communications of the

ACM, vol. 21, pp. 613–641, August 1978. 1977 ACM Turing Award

Lecture.

[9] P. Bertin, D. Roncin, and J. Vuillemin, “Introduction to programmable

active memories,” Tech. Rep. 3, DEC Paris Research Laboratory, 1989.

[10] P. Bertin, D. Roncin, and J. Vuillemin, “Programmable active memo-

ries: A performance assessment,” Tech. Rep. 24, DEC Paris Research

Laboratory, 1993.

[11] G. Blelloch, “Scans as primitive parallel operations,” in Proceedings of

the 1987 International Conference on Parallel Processing, pp. 355–3672,

1987.

[12] G. E. Blelloch, Vector Models for Data-Parallel Computing. Cambridge,

MA: The MIT Press, 1990.

[13] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam,

B. Moore, C. Peterson, J. Pieper, L. Rankin, P. Tseng, J. Sutton, J. Ur-

banski, and J. Webb, “iWarp: An integrated solution to high-speed par-

allel computing,” in Supercomputing ’88, pp. 330–339, 1988.

[14] B. Box, “Field programmable gate array based reconfigurable preproces-

sor,” in IEEE Workshop on FPGAs for Custom Computing Machines

191

(D. A. Buell and K. L. Pocek, eds.), (Los Alamitos, CA), pp. 40–48,

IEEE Computer Society Press, April 1994.

[15] D. A. Buell and K. L. Pocek, eds., IEEE Workshop on FPGAs for Cus-

tom Computing Machines, (Los Alamitos, CA), IEEE Computer Society

Press, April 1993.

[16] D. A. Buell and K. L. Pocek, eds., IEEE Workshop on FPGAs for Cus-

tom Computing Machines, (Los Alamitos, CA), IEEE Computer Society

Press, April 1994.

[17] W. S. Carter, K. Duong, R. Freeman, H.-C. Hseih, J. Y. Ja, J. E.

Mahoney, L. T. Ngo, and S. L. Sze, “A user programmable reconfig-

urable logic array,” in IEEE 1986 Custom Integrated Circuits Conference,

pp. 233–235, 1986.

[18] S. Casselman, “Virtual computing and the virtual computer,” in IEEE

Workshop on FPGAs for Custom Computing Machines (D. A. Buell and

K. L. Pocek, eds.), (Los Alamitos, CA), pp. 43–48, IEEE Computer So-

ciety Press, April 1993.

[19] P. K. Chan, M. D. F. Schlag, and M. Martin, “BORG: A reconfigurable

prototyping board using field-programmable gate arrays,” in First Inter-

national ACM/SIGDA Workshop on Field Programmable Gate Arrays,

pp. 47–51, 1992.

[20] S. C. Chapra and R. P. Canale, Numerical Methods for Engineers.

McGraw–Hill Book Company, second ed., 1988.

192

[21] C. E. Cox and W. E. Blanz, “GANGLION – a fast field-programmable

gate array implementation of a connectionist classifier,” IEEE Journal of

Solid-State Circuits, vol. 27, pp. 288–299, March 1992.

[22] S. A. Cuccaro and C. F. Reese, “The CM-2X: A hybrid CM-2 / xilinx pro-

totype,” in IEEE Workshop on FPGAs for Custom Computing Machines

(D. A. Buell and K. L. Pocek, eds.), (Los Alamitos, CA), pp. 121–130,

IEEE Computer Society Press, April 1993.

[23] D. E. V. den Bout, “The anyboard: Programming and enhancements,”

in IEEE Workshop on FPGAs for Custom Computing Machines (D. A.

Buell and K. L. Pocek, eds.), (Los Alamitos, CA), pp. 68–77, IEEE Com-

puter Society Press, April 1993.

[24] J. B. Dennis, “Data flow supercomputers,” IEEE Computer, vol. 13,

pp. 48–56, November 1980.

[25] J. B. Dennis and G. G. Rong, “Maximum pipelining of array operations

on static data flow machine,” in International Conference on Parallel

Processing, pp. 331–334, August 1983.

[26] C. Ebeling, G. Borriello, S. A. Hauck, D. Song, and E. A. Walkup,

“TRIPTYCH: a new FPGA architecture,” in FPGAs (W. Moore and

W. Luk, eds.), pp. 75–90, Abingdon, England: Abingdon EE&CS Books,

1991.

[27] M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual.

The Addison-Wesley Publishing Company, 1990.

193

[28] G. Estrin, “Organization of computer systems – the fixed plus variable

structure computer,” in Proceedings of the Western Joint Computer Con-

ference, pp. 33–40, May 1960.

[29] G. Estrin, B. Bussell, R. Turn, and J. Bibb, “Parallel processing in a re-

structurable computer system,” IEEE Transactions on Electronic Com-

puters, vol. EC-12, pp. 747–755, December 1963.

[30] G. Estrin and R. Turn, “Automatic assignment of computations in a

variable structure computer system,” IEEE Transactions on Electronic

Computers, vol. EC-12, pp. 755–773, December 1963.

[31] G. Estrin and C. R. Viswanathan, “Organization of a “fixed-plus-

variable” structure computer for eigenvalues and eigenvectors of real sym-

metric matricies,” Journal of the ACM, vol. 9, pp. 41–60, January 1962.

[32] B. Fagin and C. Renard, “Field programmable gate arrays and floating

point arithmetic,” IEEE Transactions on Very Large Scale Integrated

(VLSI) Systems, vol. 2, pp. 365–367, September 1994.

[33] J. T. Feo, “An analysis of the computational and parallel complexity of

the livermore loops,” Parallel Computing, vol. 7, pp. 163–185, June 1988.

[34] H. Fleisher and L. I. Maissel, “An introduction to array logic,” IBM

Journal of Research and Development, pp. 98–109, March 1975.

[35] M. Fouts, “The Livermore Loops in C.” NASA Ames Research Center

memo, 1994.

194

[36] F. Furtek, G. Stone, and I. Jones, “Labyrinth: A homogeneous com-

putational medium,” in IEEE Custom Integrated Circuits Conference,

pp. 31.1.1–31.1.4, 1990.

[37] D. D. Gajski, “An algorithm for solving linear recurrence systems on par-

allel and pipelined machines,” IEEE Transactions on Computers, vol. C-

30, pp. 190–206, March 1981.

[38] D. D. Gajski, D. A. Padua, D. J. Kuck, and R. H. Kuhn, “A second

opinion on data flow machines and languages,” IEEE Computer, vol. 15,

pp. 58–69, February 1982.

[39] G. R. Gao, “Algorithmic aspects of balancing techniques for pipelined

data flow code generation,” Journal of Parallel and Distributed Comput-

ing, vol. 6, pp. 39–61, 1989.

[40] M. Gokhale, W. Holmes, A. Kosper, D. Kunze, D. Lopresti, S. Lucas,

R. Minnich, and P. Olsen, “SPLASH: A reconfigurable linear logic ar-

ray,” in International Conference on Parallel Processing, pp. I–526–I–532,

1990.

[41] M. Gokhale, W. Holmes, A. Kosper, S. Lucas, R. Minnich, and D. Sweely,

“Building and using a highly parallel programmable logic array,” IEEE

Computer, pp. 81–89, January 1991.

[42] M. Gokhale and R. Minnich, “FGPA computing in data parallel C,”

in IEEE Workshop on FPGAs for Custom Computing Machines (D. A.

Buell and K. L. Pocek, eds.), (Los Alamitos, CA), pp. 94–101, IEEE

Computer Society Press, April 1993.

195

[43] R. C. Gonzalez and P. Wintz, Digital Image Processing. Reading, Mas-

sachusetts: Addison-Wesley Publishing Company, second ed., 1987.

[44] H. Grünbacher and R. W. Hartenstein, eds., Field-Programmable Gate

Arrays: Architecture and Tools for Rapid Prototyping. Berlin, Germany:

Springer-Verlag, September 1992. Selected papers from the Second In-

ternational Workshop on Field Programmable Logic and Applications.

Published in the Lecture Notes in Computer Science series, Volume 705.

[45] S. A. Guccione, “List of FPGA-based computing machines.” World Wide

Web page http://www.utexas.edu/˜ guccione/HW list.html, 1994.

[46] S. A. Guccione and M. J. Gonzalez, “A data-parallel programming model

for reconfigurable architectures,” in IEEE Workshop on FPGAs for Cus-

tom Computing Machines (D. A. Buell and K. L. Pocek, eds.), (Los

Alamitos, CA), pp. 79–87, IEEE Computer Society Press, April 1993.

[47] S. A. Guccione and M. J. Gonzalez, “A neural network implementa-

tion using reconfigurable architectures,” in More FPGAs (W. Moore

and W. Luk, eds.), pp. 443–451, Abingdon, England: Abingdon EE&CS

Books, 1993.

[48] H. A. Gutowitz, ed., Cellular Automata: Theory and Experiment. Cam-

bridge, Massachusetts: MIT Press, 1991.

[49] R. W. Hartenstein, A. G. Hirschbiel, M. Reidmüller, K. Schmidt, and

M. Weber, “A novel ASIC design approach based on a new machine

paradigm,” IEEE Journal of Solid-State Circuits, vol. 26, pp. 975–989,

July 1991.

196

[50] R. W. Hartenstein, R. Kress, and H. Reinig, “A reconfigurable data-

driven ALU for xputers,” in IEEE Workshop on FPGAs for Custom

Computing Machines (D. A. Buell and K. L. Pocek, eds.), (Los Alamitos,

CA), pp. 139–146, IEEE Computer Society Press, April 1994.

[51] R. W. Hartenstein and M. Z. Serv́ıt, eds., Field-Programmable Logic:

Architectures, Synthesis and Applications. Berlin, Germany: Springer-

Verlag, September 1994. Selected papers from the Fourth International

Workshop on Field Programmable Logic and Applications. Published in

the Lecture Notes in Computer Science series, Volume 849.

[52] P. J. Hatcher and M. J. Quinn, Data–Parallel Programming on MIMD

Computers. Cambridge, MA: The MIT Press, 1991.

[53] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach. Morgan Kaufmann Publishers, Inc., 1990.

[54] W. D. Hillis, The Connection Machine. Cambridge, MA: The MIT Press,

1985.

[55] W. D. Hillis and J. Guy L. Steele, “Data parallel algorithms,” Commu-

nications of the ACM, vol. 29, pp. 1170–1183, December 1986.

[56] D. T. Hoang, “Searching genetic databases on splash 2,” in IEEE Work-

shop on FPGAs for Custom Computing Machines (D. A. Buell and K. L.

Pocek, eds.), (Los Alamitos, CA), pp. 185–191, IEEE Computer Society

Press, April 1993.

197

[57] D. R. Hush and B. G. Horne, “Progress in supervised neural networks:

What’s new since Lippmann,” IEEE Signal Processing Magazine, pp. 8–

39, January 1993.

[58] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Process-

ing. McGraw–Hill Book Company, 1984.

[59] K. Hwang and Z. Xu, “Multipipeline networking for compound vector

processing,” IEEE Transactions on Computers, vol. 37, pp. 33–47, Jan-

uary 1988.

[60] C. Iseli and E. Sanchez, “Spyder: A reconfigurable VLIW processor us-

ing FPGAs,” in IEEE Workshop on FPGAs for Custom Computing Ma-

chines (D. A. Buell and K. L. Pocek, eds.), (Los Alamitos, CA), pp. 17–24,

IEEE Computer Society Press, April 1993.

[61] W. H. Kautz, “Cellular logic-in-memory arrays,” IEEE Transactions on

Computers, vol. C-18, pp. 719–727, August 1970.

[62] W. H. Kautz, K. N. Levitt, , and A. Waksman, “Cellular interconnection

arrays,” IEEE Transactions on Electronic Computers, vol. C-17, pp. 443–

451, May 1968.

[63] T. Kean and G. Feng, “Configurable logic: An approach to rapid imple-

mentation of ASIC’s,” Tech. Rep. CSR-234-87, University of Edinburgh,

Department of Computer Science, June 1987.

[64] T. Kean and J. Gray, “Configurable hardware: Two case studies of micro-

grain computation,” in Systolic Array Processors (J. McCanny and E. S.

Jr., eds.), pp. 310–319, Prentice Hall, 1989.

198

[65] T. A. Kean, Configurable Logic: A Dynamically Programmable Cellular

Architecture and its VLSI Implementation. PhD thesis, University of

Edinburgh, Department of Computer Science, January 1989.

[66] B. W. Kernighan and D. M. Ritchie, The C Programming Language.

Prentice Hall Publishing Company, second edition ed., 1988.

[67] P. M. Kogge, “Parallel solution of recurrence problems,” IBM Journal of

Research and Development, vol. 18, pp. 138–148, March 1974.

[68] P. M. Kogge, The Architecture of Pipelined Computers. McGraw–Hill,

1981.

[69] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient

solution of a general class of recurrence equations,” IEEE Transactions

on Computers, vol. C-22, pp. 786–793, August 1973.

[70] I. Koren, B. Mendelson, I. Peled, and G. M. Silberman, “A data-driven

VLSI array for arbitrary algorithms,” IEEE Computer, pp. 30–43, Octo-

ber 1988.

[71] I. Koren and G. M. Silberman, “A direct mapping of algorithms onto

VLSI processing arrays based on the data flow approach,” in Proceedings

of the International Conference on Parallel Processing, pp. 335–337, 1983.

[72] C. P. Kruskal, L. Rudolph, and M. Snir, “The power of parallel prefix,”

IEEE Transactions on Computers, vol. C-34, pp. 965–968, October 1985.

[73] H. T. Kung, “Why systolic architectures?,” IEEE Computer, vol. 15,

pp. 37–46, January 1982.

199

[74] S.-Y. Kung, “On computing with systolic/wavefront array processors,”

Proceedings of the IEEE, vol. 72, pp. 867–884, July 1984.

[75] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal

of the ACM, vol. 27, pp. 831–838, October 1980.

[76] G. J. Lipovski and A. Tripathi, “A reconfigurable varistructure array pro-

cessor,” in Proceedings of the 1977 International Conference on Parallel

Processing, pp. 165–174, IEEE Press, 1977.

[77] R. P. Lippmann, “Introduction to computing with neural nets,” IEEE

Acoustics, Speech and Signal Processing, pp. 4–22, April 1987.

[78] R. Lipton and D. Lopresti, “A systolic array for rapid string comparison,”

in 1985 Chapel Hill Conference on Very Large Scale Integration (H. Fuchs,

ed.), pp. 363–376, Computer Science Press, 1985.

[79] R. Lipton and D. Lopresti, “Comparing long strings on a short systolic

array,” in Systolic Arrays (W. Moore, A. McCabe, and R. Urquhart,

eds.), pp. 181–190, Adam Hilger, 1986.

[80] J. C. Logue, N. F. Brickman, F. Howley, J. W. Jones, and W. W. Wu,

“Hardware implementation of a small system in programmable logic ar-

rays,” IBM Journal of Research and Development, pp. 110–119, March

1975.

[81] D. P. Lopresti, “P-NAC: A systolic array for comparing nucleic acid se-

quences,” IEEE Computer, pp. 98–99, July 1987.

200

[82] W. Luk, D. Ferguson, and I. Page, “Structured hardware compilation

of parallel programs,” in More FPGAs (W. Moore and W. Luk, eds.),

pp. 213–224, Abingdon, England: Abingdon EE&CS Books, 1993.

[83] W. Luk, V. Lok, and I. Page, “Hardware acceleration of divide-and-

conquer paradigms: A case study,” in IEEE Workshop on FPGAs for

Custom Computing Machines (D. A. Buell and K. L. Pocek, eds.), (Los

Alamitos, CA), pp. 192–201, IEEE Computer Society Press, April 1993.

[84] W. Luk and I. Page, “Parameterising designs for FPGAs,” in FPGAs

(W. Moore and W. Luk, eds.), pp. 284–296, Abingdon, England: Abing-

don EE&CS Books, 1991.

[85] W. Luk, T. Wu, and I. Page, “Hardware-software codesign of multidi-

mensional programs,” in IEEE Workshop on FPGAs for Custom Com-

puting Machines (D. A. Buell and K. L. Pocek, eds.), (Los Alamitos,

CA), pp. 82–90, IEEE Computer Society Press, April 1994.

[86] G.-K. Ma and F. J. Taylor, “Multiplier policies for digital signal process-

ing,” IEEE ASSP Magazine, vol. 7, pp. 6–20, January 1990.

[87] P. Marchal and E. Sanchez, “CAFCA: (compact accelerator for cellular

automata) the metamorphosable machine,” in IEEE Workshop on FP-

GAs for Custom Computing Machines (D. A. Buell and K. L. Pocek,

eds.), (Los Alamitos, CA), pp. 66–71, IEEE Computer Society Press,

April 1994.

[88] J. L. McClelland and D. E. Rumelhart, Explorations in Parallel Dis-

tributed Processing: A Handbook of Models, Programs and Exercises.

201

Cambridge, Massachusetts: MIT Press, 1988.

[89] W. McCulloch and W. Pitts, “A logical calculus of the idea immanent in

nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115–

153, 1943.

[90] F. H. McMahon, “The Livermore Fortran kernels: A computer test of

the numerical performance range,” Tech. Rep. UCRL-53745, Lawrence

Livermore National Laboratory, December 1986.

[91] G. Milne, P. Cockshott, G. McCaskill, and P. Barrie, “Realizing mas-

sively concurrent systems on the SPACE machine,” in IEEE Workshop

on FPGAs for Custom Computing Machines (D. A. Buell and K. L.

Pocek, eds.), (Los Alamitos, CA), pp. 26–32, IEEE Computer Society

Press, April 1993.

[92] R. C. Minnick, “Cutpoint cellular logic,” IEEE Transactions on Elec-

tronic Computers, vol. EC-13, pp. 685–698, December 1964.

[93] R. C. Minnick, “A survey of microcellular research,” Journal of the ACM,

vol. 14, no. 2, pp. 203–241, 1967.

[94] S. Monaghan, T. O’Brien, and P. Noakes, “Use of FFGAs in computa-

tional physics,” in FPGAs (W. Moore and W. Luk, eds.), pp. 363–372,

Abingdon, England: Abingdon EE&CS Books, 1991.

[95] W. Moore and W. Luk, eds., FPGAs. Abingdon, England: Abingdon

EE&CS Books, 1991. edited from the 1991 International Workshop on

Field Programmable Logic and Applications.

202

[96] W. Moore and W. Luk, eds., More FPGAs. Abingdon, England: Abing-

don EE&CS Books, 1993. edited from the 1993 International Workshop

on Field Programmable Logic and Applications.

[97] Nordström, T. and Svensson, B., “Using and designing massively par-

allel computers for artificial neural networks,” Journal of Parallel and

Distributed Processing, vol. 14, pp. 260–285, March 1992.

[98] A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems.

Prentice–Hall, 1983.

[99] H. L. Owen, U. R. Khan, and J. L. A. Hughes, “FPGA-based emulator

architectures,” in More FPGAs (W. Moore and W. Luk, eds.), pp. 398–

409, Abingdon, England: Abingdon EE&CS Books, 1993.

[100] D. A. Padua and M. J. Wolf, “Advanced compiler optimizations for su-

percomputers,” Communications of the ACM, vol. 29, pp. 1184–1201,

December 1986.

[101] I. Page and W. Luk, “Compiling occam into FPGAs,” in FPGAs

(W. Moore and W. Luk, eds.), pp. 271–283, Abingdon, England: Abing-

don EE&CS Books, 1991.

[102] S. S. Patil and T. A. Welch, “A programmable logic approach for VLSI,”

IEEE Transactions on Computers, vol. c-28, September 1979.

[103] W. Pfeiffer, A. Alagar, A. Kamrath, R. H. Leary, and J. Rogers, “Bench-

marking and optimization of scientific codes on the CRAY X-MP, CRAY-

2 and SCS-40 vector computers,” The Journal of Supercomputing, vol. 4,

pp. 131–152, June 1990.

203

[104] D. A. Pomerleau, G. L. Gusciora, D. S. Touretzky, and H. T. Kung,

“Neural network simulation at warp speed: How we got 17 million con-

nections per second,” in IEEE International Conference on Neural Net-

works, pp. 143–150, 1988.

[105] W. Poundstone, The Recursive Universe. William Morrow and Company,

1985.

[106] W. T. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical recipes in C. Cambridge University Press, second ed., 1992.

[107] G. Quénot, I. Kraljić, J. Sérot, and B. Zavidovique, “A reconfigurable

compute engine for real-time vision automata prototyping,” in IEEE

Workshop on FPGAs for Custom Computing Machines (D. A. Buell and

K. L. Pocek, eds.), (Los Alamitos, CA), pp. 91–100, IEEE Computer

Society Press, April 1994.

[108] F. Raimbault, D. Lavenier, S. Rubini, and B. Pottier, “Fine grain paral-

lelism on a MIMD machine using FPGAs,” in IEEE Workshop on FPGAs

for Custom Computing Machines (D. A. Buell and K. L. Pocek, eds.),

(Los Alamitos, CA), pp. 2–8, IEEE Computer Society Press, April 1993.

[109] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” in Parallel Distributed Processing:

Explorations in The Microstructure of Cognition (D. E. Rumelhart and

J. L. McClelland, eds.), vol. 1, pp. 318–362, Cambridge, Massachusetts:

MIT Press, 1986.

204

[110] G. W. Sabot, The Paralation Model: Architecture Independent Parallel

Processing. Cambridge, Massachusetts: MIT Press, 1988.

[111] D. Sankoff and J. B. Kruskal, eds., Time Warps, String Edits, and Macro-

molecules: The Theory and Practice of Sequence Comparison. Reading,

Massachusetts: Addison-Wesley Publishing Company, Inc., 1983.

[112] M. Shand, “Measuring system performance with reprogrammable hard-

ware,” Tech. Rep. 19, DEC Paris Research Laboratory, 1992.

[113] M. Shand, P. Bertin, and J. Vuillemin, “Hardware speedups in long in-

teger multiplication,” Computer Architecture News, vol. 19, pp. 106–113,

March 1991.

[114] R. G. Shoup, Programmable Cellular Logic Arrays. PhD thesis, Carnegie-

Mellon University, Computer Science Department, March 1970.

[115] R. G. Shoup, “Parameterized convolution filtering in an FPGA,” in More

FPGAs (W. Moore and W. Luk, eds.), pp. 274–280, Abingdon, England:

Abingdon EE&CS Books, 1993.

[116] G. R. Sohie and W. Chen, Implementation of Fast Fourier Transforms

on Motorola’s Digital Signal Processors. Motorola, Inc., 1993.

[117] H. S. Stone, “Parallel processing with a perfect shuffle,” IEEE Transac-

tions on Computers, vol. C-20, pp. 153–161, February 1971.

[118] H. S. Stone, High-Performance Computer Architecture. Addison-Wesley

Publishing Company, 1990.

205

[119] E. E. Swartzlander, Jr., ed., Computer Arithmetic, vol. 1. Los Alamitos,

California: IEEE Computer Society Press, 1990.

[120] E. E. Swartzlander, Jr. and G. Hallnor, “High speed FFT processor im-

plementation,” in VLSI Signal Processing, pp. 27–34, IEEE Press, 1984.

[121] T. Toffoli and N. Margolus, eds., Cellular Automata Machines. Cam-

bridge, Massachusetts: The MIT Press, 1987.

[122] K. W. Tse, C. H. Leung, and K. F. Cheng, “Implementation of pre-

processing and feature extraction of chinese characters with FPGAs,” in

More FPGAs (W. Moore and W. Luk, eds.), pp. 307–314, Abingdon,

England: Abingdon EE&CS Books, 1993.

[123] J. D. Ullman, Computational Aspects of VLSI. Rockville, Maryland:

Computer Science Press, Inc., 1984.

[124] United States Department of Energy, Washington, D.C. 20585, Human

Genome Program Report, June 1992.

[125] D. E. Van den Bout, J. H. Morris, D. Thomae, S. Labrozzi, S. Wingo,

and D. Hallman, “AnyBoard: An FPGA-based reconfigurable system,”

IEEE Design and Test of Computers, vol. 9, pp. 21–30, September 1992.

[126] J. Varghese, M. Butts, and J. Batcheller, “An efficient logic emulation

system,” IEEE Transactions on Very Large Scale Integrated (VLSI) Sys-

tems, vol. 1, pp. 171–174, June 1993.

206

[127] J. Viitanen, T. Korpiharju, and H. Kiminkinen, “Mapping algorithms

onto the TUT cellular array processor,” in International Conference on

Application Specific Array Processors, pp. 235–246, 1990.

[128] R. A. Wagner and M. J. Fischer, “The string-to-string correction prob-

lem,” Journal of the ACM, vol. 21, no. 1, pp. 168–173, 1974.

[129] S. E. Wahlstrom, “Programmable logic arrays – cheaper by the millions,”

Electronics, vol. 40, pp. 90–95, December 11 1967.

[130] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Sil-

verman, and S. Ghosh, “PRISM-II compiler and architecture,” in IEEE

Workshop on FPGAs for Custom Computing Machines (D. A. Buell and

K. L. Pocek, eds.), (Los Alamitos, CA), pp. 9–16, IEEE Computer Soci-

ety Press, April 1993.

[131] W. J. Wilbur and D. J. Lipman, “Rapid similarity searches of nucleic

acid and protein data banks,” Proceedings of the National Academy of

Science (USA), vol. 80, pp. 726–730, February 198.

[132] A. Wolfe and J. P. Shen, “Flexible processors: A promising application-

specific processor design approach,” in Proceedings of the 21st Annual

Workshop on Microprogramming and Microarchitecture, pp. 30–39, IEEE

Press, 1988.

[133] Xilinx, Inc., The Programmable Gate Array Data Book, 1991.

Vita

Steven Anthony Guccione was born in New Orleans, Louisiana on Novem-

ber 30, 1962, son of Eugene Steven Guccione and Joan McPherson Guccione.

He received his diploma from Archbishop Rummel High School in Metairie,

Louisiana in 1980. He received the degree of Bachelor of Science in Electri-

cal and Computer Engineering from Boston University in 1984 and the degree

of Master of Science in Electrical Engineering from University of Minnesota

in 1989. Mr. Guccione has been employed by Texas Instruments, Honeywell,

Advanced Micro Devices, I.B.M. and several smaller companies.

Permanent address: 4205 Dauphine Drive
Austin, Texas 78727

This dissertation was typeset with LATEX‡ by the author.

‡LATEX is a document preparation system developed by Leslie Lamport as a special version
of Donald Knuth’s TEX Program.

