
A Data-Parallel Programming Model for Recon�gurable

Architectures

Steven A. Guccione

Mario J. Gonzalez

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX 78712

Recently, several machines have been built using

Field Programmable Gate Array (FPGA) technology.

These recon�gurable architectures have demonstrated

very high performance for a variety of problems. The

con�guration of these machines typically rely on some

form of hardware speci�cation. In this paper we

demonstrate that a more traditional software approach

may be used. A vector based data-parallel model and

its mapping to a recon�gurable architecture are intro-

duced. Included in the model are parallel pre�x or scan

operators. The language supporting this model is a

subset of the C programming language.

1 Introduction

Recently, several high performance coprocessors
have been built using FPGA technology [1] [4], [5], [8]
[12]. These systems have shown a very high level of
performance using a relatively small amount of hard-
ware.

These architectures, however, di�er dramatically
from conventional von Neumann machines. This has
made it di�cult to provide high level support for de-
velopment that users of traditional machines normally
require.

This paper describes a programming model and a
simple programming language that may be used to
implement algorithms for a general purpose recon�g-
urable system.

2 Recon�gurable Architectures

All of the recon�gurable systems referenced have a
similar architecture. A central Recon�gurable Proces-
sor Unit (RPU) is connected to a memory system. A
host computer is used to con�gure the RPU and to
provide input / output support.

This architecture is very
exible and may be used
in a variety of ways. The most obvious use of such
a machine is to con�gure the RPU to behave like an
existing commercial microprocessor. The ability to
emulate existing processors permits the use of a fa-
miliar software environment. Unfortunately, it is not
likely to be faster than existing custom devices and
will most likely require an order of magnitude more
hardware.

Another approach is to use the RPU as a custom
circuit implementation of a speci�c algorithm. This
approach provides very high performance for a given
algorithm. Unfortunately, the programmer must be
skilled in the use of circuit design tools.

For any potential mainstream use of recon�gurable
architectures, both high performance and conven-
tional programming language support will probably
be necessary.

3 A Vector-Based Data Parallel Pro-

gramming Model

In a recon�gurable machine, there are two distinct
phases of operation. The �rst is the con�guration
of the processor. During this phase a circuit is set
up in the RPU. The second is the processing phase.
Here, arithmetic and logical operations are performed
on data. During the con�guration phase, no actual
processing of data occurs. To reduce the overhead
of con�guration, it is desirable to minimize the time
spent in con�guration and maximize the amount of
time spent processing data.

In the \custom circuit" approach, con�guration is
done once before any processing of data begins. Re-
con�guration in the middle of an algorithm is not usu-
ally performed. This style of usage of the RPU is
excellent for simple applications which require high

bandwidth. Unfortunately, only a few algorithms are
able take advantage of this approach.

What is desirable is some method of minimizing the
amount of time spent con�guring the RPU, while still
performing large amounts of work. One model which
�ts this description is a vector model of computation.
Here, the circuit is con�gured once, and streams of
data are processed. Clearly, longer vectors will mini-
mize the recon�guration overhead.

With this approach, a recon�gurable architecture
can be used much like a traditional vector processor,
but with several advantages. First, any arbitrary vec-
tor operation may be implemented in the RPU. In tra-
ditional architectures, the vector operations are lim-
ited to the those de�ned by the machine instruction
set. Second, the circuits performing these operations
can be pipelined, increasing the throughput of the sys-
tem.

The use of pipelining of vector operations should
provide very high raw performance. In reality, how-
ever, the structure of many algorithms makes it di�-
cult to achieve high performance via pipelining. The
most common barrier to vector performance is data
dependencies. A data dependency occurs when the
result of an operation currently in the pipeline is re-
quired to complete before another can begin. There
are several established techniques for handling data
dependencies in a pipeline. Most rely on complex
scheduling and reservation schemes.

Other methods of handling dependencies such as
stalling or
ushing the pipeline can dramatically re-
duce performance. With a recon�gurable architec-
ture, the pipelines may potentially be very deep. The
penalty for a data dependency may cause an unac-
ceptable reduction in the performance of the particu-
lar algorithm. What is desirable is a model of com-
putation which handles data dependencies in vector
calculations in a graceful manner.

One model of computation that �ts this description
is the data parallelmodel. in this model, all operations
are performed in parallel on a vector of data. Since
data items in the vectors are processed independently,
algorithms developed with this model exhibit no data
dependencies. This model has been successfully used
in commercial SIMD systems [6] and has even been
applied to MIMD multiprocessors [7].

4 Vector and SIMD Architectures

Since this model is so closely associated with SIMD
architectures, the relationship between the data par-

SIMD Vector

PP P

A[i] = B[i] + C[i]

P

M M M M
o o o

Vector length: K
Processors: N
time: ceil(K/N)

P

o
o
o

o
o
o

o
o
o

A[i] = B[i] + C[i]

A

B C

Vector Length: K
Processors: 1
time: ceil(K/1) = K

Figure 1: SIMD vs. vector parallelism.

allel model, SIMD architectures and pipelines should
be discussed.

In a SIMD machine, N (usually) identical proces-
sors perform operations in lock-step on local data.
This permits N operations to be performed per in-
struction cycle. Data is occasionally exchanged be-
tween processors via an interconnection network.

Using a pipeline approach, a single processor can
perform N operations in N cycles, plus some initial
startup cost. This reduces the hardware complexity
by at least a factor of N . Performance, however, may
still be competitive, despite this hardware reduction.
The instruction cycle time of a pipelined system may
be several orders of magnitude faster than that of a
SIMD machine.

Figure 1 illustrates vector and SIMD architectures.
By trading computation time for hardware, the vector
model of computation can be viewed as the dual of the
SIMD model. Because of this relationship, the SIMD
vector based data parallel programming model can be
applied to a pipelined vector machine.

5 Programming Language Support

Language support for vector operations has been
available for some time. APL, a language with built
in vector support, has been available since the early
1970s. Vectorizing FORTRAN compilers have also
been commercially available for several years. These
two languages are excellent candidates for a program-
ming language for a vector based recon�gurable archi-
tecture. Both, however, have drawbacks.

APL, a very powerful language for vector opera-
tions, has not achieved widespread popularity. This is

most likely due to its somewhat unusual syntax. Vec-
tor based FORTRAN compilers have the disadvantage
that they rely heavily on the traditional von Neumann
model of computation. The vector additions are at
best afterthoughts.

Functional programming languages are also possi-
ble candidates for recon�gurable architectures. These
languages tend to be more architecture independent
and provide vector support. Backus' FP is a good
example of a functional language that includes vector
support [2].

Several interesting programming languages for
SIMD architectures have been de�ned and imple-
mented. In particular, *LISP and C* for the Connec-
tion Machine [6] have achieved some popularity. These
languages support vectors and data parallel program-
ming. All of these would make excellent candidates
for a recon�gurable architecture.

As a more practical concern, the popularity of lan-
guages like C cannot be ignored. If the goal is to pro-
vide a programming environment usable by today's
programmer, C would be the obvious �rst choice for a
programming language.

Some interesting work has been done using the C

language on a recon�gurable architecture [1]. Our ap-
proach is to take features of the languages above and
use them in a language which which is very similar to
C.

6 A C-like Programming Language

The �rst problem in using C to program a recon-
�gurable architecture is its inherently von Neumann
style. Data structures such as pointers directly corre-
spond to memory addresses. Control structures such
as loops correspond to branches. These sorts of struc-
tures will likely not translate well to a recon�gurable
architecture.

Consider the simple case of adding two vectors. In
C, the following code is used:

int i;

int a[100];

int b[100];

int c[100];

for (i=0; i<100; i++)

c[i] = a[i] + b[i];

The declaration of the vectors is suitable for our
purposes. However, the explicit control structure pro-
vided by the FOR() loop is redundant and can be

eliminated. This results in the following \vector" C

code:

int a[100];

int b[100];

int c[100];

c = a + b;

In this simple case, we see that three vectors of in-
tegers of 100 elements each must be allocated. The
RPU should be con�gured as a simple integer adder.
Translating such a program fragment to run on a re-
con�gurable architecture is very straightforward.

It should be mentioned that this programming style
is gaining popularity on conventional architectures.
Languages such as C++ and Ada permit the over-
loading of operators such as \+". This allows vectors
to be added using simple in�x notation without the
explicit use of control structures.

If simple vector operations are performed exclu-
sively, this model should be su�cient. Unfortunately,
the lack of other C-style control structures such as if-
then statements and pointers will diminish the power
of this language.

Either some way must be found to support these
control structures, or new control structures must be
introduced.

7 Scan Primitives

One construct popularized by SIMD architectures
is the parallel pre�x or scan operation. This operation
is fairly simple and bridges the gap between vector and
scalar operations. A simple example is the scan-add

function. This function is denoted by +-scan() in the
Connection Machine literature. We will also use this
notation.

The +-scan() function takes in a vector and returns
a vector. The function adds the elements in vector re-
turning partial sums. For example, consider the code
fragment below.

A[] = {1, 4, 7, 2, 6, 0, 3};

A = +-scan(A);

The initial and �nal values for the vector A[] will
be:

A: [1, 4, 7, 2, 6, 0, 3]

+-scan(A): [1, 5, 12, 14, 20, 20, 23]

This scan operation provides the necessary func-
tionality to perform operations such as accumulation.
Other scan primitives can includemax-scan, min-scan,
and-scan, or-scan, *-scan, etc ...

These scan or parallel pre�x operators have been
available in APL for some time, and have more re-
cently been popularized as a parallel processing con-
struct on SIMD style machines. In SIMD machines,
the implementation of scan operations make exten-
sive use of the interprocessor communication network.
Data is propagated from one processor to another, ei-
ther in a serial or tree fashion. While this makes scan
operations a useful communication technique, the ex-
tensive use of the network makes these operations ex-
pensive on SIMD hardware.

Interestingly, these operations can be implemented
very e�ciently using a recon�gurable architecture. A
simple macrocell implementation of the +-scan prim-
itive would be a simple adder with the sum fed back
into one of the inputs. Figure 2 illustrates this macro-
cell. Other scan operators can be implemented in a
similar manner.

+ +−scan(A)
A

Figure 2: A macrocell for the +-scan operator.

For a more detailed look at scan primitives, see [3],
[6], and [10].

8 A Simple Example: e
x

Below is an example calculation implemented using
a data parallel approach and scans. This calculation is
used to compute the value of ex. The technique used
is the summation of the Taylor series:

e
x = 1 + x+ x

2

2!
+ x

3

3!
+ x

4

4!
� ��

This particular example was chosen not so much for
its high computation requirements, but for its simplic-
ity. It contains a small number of operations, several
of which are scans.

The calculation of the series can be performed with
the following code fragment:

oat denom[MAX]; /* Denominator */

oat neum[MAX]; /* Numerator */

oat series[MAX]; /* Series terms */

oat sum[MAX]; /* Series sum */

denom = 1; /* [1, 1, 1, 1 ...] */
denom = +-scan(denom); /* [1, 2, 3, 4 ...] */
denom = *-scan(denom); /* [1, 2, 6, 24 ...] */

/* [1!, 2!, 3! ...] */

neum = x; /* [x, x, x, x ...] */
neum = *-scan(neum); /* [x, x2, x3,...] */

series = neum / denom;
sum = +-scan(series); /* ex - 1 */

Four data vectors are declared. These contain the
values in the numerator and denominator of the series,
the resultant series and the �nal sum. The �rst step
in the algorithm is to initialize the denominator vector
to 1. Note that the constant initialization of a vector
is permitted.

A +-scan performed on the denominator produces
a vector of sequential non-negative integers. A *-scan

on these integers produces a vector of sequential fac-
torials. At this point, the denominator of the series
has been computed.

In a fashion similar to the initialization of the de-
nominator, the numerator vector, neum is initialized
to x. A *-scan is then performed on this vector to
produce the numerator series.

The numerator and denominator vectors are then
divided, producing a vector containing the terms of
the series. All that is required now is that the series
be summed. This is accomplished with a �nal +-scan.
This produces a vector containing the partial sums of
the series. Each element in the vector will contain a
better successive approximation of ex � 1.

It should be noted that ex � 1 rather than e
x is

calculated. This is done to simplify the example. To
calculate the series without ignoring the initial term
of 1, the �rst element in the neum and denom vectors
may be set to 1. Alternately, a �nal addition of 1 to
the sum vector can be performed.

9 Compilation

In the ex example above, two +-scan, two *-scan

and a vector divide are required. The �rst approach to
implementing this algorithm on a recon�gurable ma-
chine would be to con�gure the RPU once for each
operation.

For instance, the �rst operation is the initialization
of the vector denom to 1. The RPU would be con-
�gured as a circuit that produces a constant \1" for
any input. The denom vector would be processed by
the RPU, with the results being stored in a temporary
vector.

The RPU would next be recon�gured to perform
a +-scan operation. The temporary vector would be
processed by the +-scan circuit and stored in a second
temporary vector. This process would continue until
the �nal sum output vector is produced.

The alternating of recon�guration and processing is
well suited to vector processing. This approach, how-
ever, does have some drawbacks. The recon�guration
of the RPU for each line of code is reminiscent of inter-
preted languages. This interpreted mode of operation
will make use of such simple operations that the uti-
lization of the RPU may be very low. This approach
also ignores any parallelism in the algorithm.

It would be desirable to combine operations and
allow multiple functional units (FUs) to be con�gured
to operate in parallel. These functional units could
operate in parallel horizontally, providing superscalar
style processing.

Inspection of the code for the ex calculation reveals
that initialization of the denom and neum vectors are
independent and can be performed in parallel. It is
possible to combine these operations into a single step.
Two circuits, one initializing denom to 1 and one ini-
tializing neum to x can be con�gured in the RPU.
From this combined circuit, the neum and denom vec-
tors can be initialized simultaneously. This exploita-
tion of spatial parallelismmay be limited by the mem-
ory bandwidth of the underlying system. Here it is
assumed that the bus connecting the RPU and the
memory system is wide enough to support the simul-
taneous input and output of two vectors. Figure 3
illustrates this RPU con�guration.

1 x

denom neum

Figure 3: Functional units operating in parallel.

The functional units could also be cascaded verti-
cally, with the output of one unit feeding the input
of another. Consider the last two calculations in the

algorithm for ex. The result of the vector division is
stored to the series vector. This vector is then used as
the input to an +-scan operation. Rather than per-
form these two operations in two passes, a composite
circuit can be con�gured that contains a vector divide
FU with its output feeding a +-scan FU. This per-
mits two operations to be performed in a single pass.
Figure 4 illustrates this RPU con�guration.

There are two e�ects of this cascading of functions.
First, the series vector was originally stored to mem-
ory as a result of the vector divide. This was then
input to the a +-scan FU in the subsequent opera-
tion. Now, since the output of the vector divide di-
rectly feeds the input of the +-scan, there is no longer
a need to allocate the sum vector. The results are
passed directly in the pipeline without ever accessing
system memory. Not only does this cascading of op-
erations eliminate a recon�guration and a processing
step in the calculation, but it also eliminates the mem-
ory storage required for a vector.

/

+−scan

e
x

Figure 4: Cascaded functional units.

The second result of this cascading of functions is
an increase in the delay of the circuit. Initially, results
were available after some delay �. Assuming that all
functional units have an equal delay, the result is now
available at some time 2�.

This increase in delay may impact performance by
reducing the maximum cycle time of the system. As
more functions are cascaded, this delay could poten-
tially grow large. The alternatives to accommodate
this variable delay at the hardware level are to either
provide a settable system clock or to limit the depth
of cascaded FUs.

Another alternative that does not sacri�ce perfor-
mance is to pipeline the functional units. If each FU is
implemented with registered outputs and all FUs are
driven by a common clock, the clock speed of the orig-
inal system can be maintained, even in the presence of

multiple pipelined functional units. The only penalty
paid for the pipelining will be an increased latency.
For a con�gured N -deep pipeline of FUs, the latency
will be N�. For long vectors, however, this will have
a minimal e�ect on overall performance.

A method for extracting the parallelism in an al-
gorithm is desired. One approach for exposing paral-
lelism is to construct the data
ow graph of the pro-
gram. The left hand side of �gure 5 shows the data
ow
graph for the code fragment for the computation of ex.

+−scan *−scan

denom
 (1)

neum
 (x)

*−scan

+−scan

/

ex

+

*

/

*

+

Figure 5: Data
ow graph and circuit for ex.

The data
ow graph of the algorithm provides all
of the information necessary to con�gure a circuit
to implement the algorithm. First, the nodes in the
data
ow graph correspond directly to the FUs in the
circuit. Next, the edges in the data
ow graph de�ne
the bus interconnections between the functional units.
Finally, it is possible that the topology of the graph
may provide direction in the placement of the FUs and
the routing of the interconnect. This is still under in-
vestigation.

Using the data
ow graph, the right side of �gure 5
shows a circuit diagram for the ex circuit. This circuit
can be con�gured into the RPU and used to perform
the calculation speci�ed by the software.

Two further features of this circuit should be men-
tioned. First, it is typical that data from vectors in
memory will be input to the RPU, with results pro-
duced at the RPU output. In this case, it is pos-
sible that the denom vector can consist of an array
of memory locations initialized to 1. This, however, is
unnecessary. Since a constant (1) is being input to the

circuit, this may be \hardwired", thus saving memory
space and memory bandwidth. A similar situation ex-
ists for the neum vector.

+ *

*

/

+

e
x

Figure 6: The circuit for ex with delay stage inserted.

A second notable feature of this circuit is the join-
ing of the two numerator and denominator calculation
pipelines into a single pipeline. When constructing
this circuit, it is crucial that the delay in the two up-
per branches of the data
ow circuit be balanced. If
all FUs have an equal delay, it would be necessary
to insert a delay stage in the right branch to balance
the circuit. Figure 6 shows the circuit for ex with the
delay stage inserted.

10 Optimizations

Several standard compiler optimizations may be
performed on the data
ow graph before generating the
circuit. First, the elimination of common subexpres-
sions is possible. In traditional architectures, once an
expression is computed, the result can be stored and
reused. The reuse of the previously calculated value
reduces the time of computation.

In a recon�gurable architecture, common subex-
pressions do not increase the calculation time, but
they do unnecessarily use RPU resources. Figure 7 il-
lustrates this in the calculation of a simple polynomial.
Here, the expression 2x2+6x is reduced to (2x)(x+3).
This results in the elimination of a multiply FU. The
depth of the pipeline is also reduced from 3 to 2. Other

optimizations may still be possible on the reduced cir-
cuit.

+

*

2x + 6x
2 (2x)(x + 3)

*

*

*

*

2 x 6

2 x 3

+

Figure 7: Optimization by common subexpression
elimination.

Strength reduction of operators is also possible.
The calculation (2�x) in the software description of an
algorithm results in the use of a multiplier FU. This
can be replaced by the equivalent expression (x + x),
which uses only an addition FU. The conversion from
a multiply FU to an adder FU can result in large re-
duction in RPU usage. Figure 8 illustrates an example
of a strength reduction optimization.

*

2 x

2x

+

2x

x

Figure 8: Optimization by strength reduction.

In general, most optimizations used by traditional
compilers to reduce calculation time can also be used
to reduce the required hardware resources in a recon-
�gurable architecture. Optimizations which are based
on modifying the control
ow of a program are usually
not applicable, however.

In addition to these standard optimizations, new

optimizationsmay be used with a recon�gurable archi-
tecture. For instance, variable datapath widths may
be implemented. If it can be guaranteed that the range
of values in the vector can be represented by N bits,
it is possible to use N -bit wide hardware. Conven-
tional systems typically limit datapath widths to even
multiples of eight bits. This is no longer necessary.

In addition to using only the necessary datapath
width, internal datapaths within the RPU may grow
and shrink depending on the required accuracy of the
calculation. A unit multiplying two N bit numbers
may produce a 2N bit result. The inputs to this mul-
tiplier unit can be N bits, with the output and subse-
quent processing stages being 2N . This technique can
eliminate certain exception conditions such as over-

ow.

11 Architectural Issues

The use of a vector based data parallel program-
ming model will in
uence the hardware implementa-
tion of the system. In general, the system will consist
of three major components, the host, the RPU and
the memory system.

The host is responsible for providing the user inter-
face and the I/O facilities. The compiler and other
tools reside on the host. In general, any commer-
cially available workstation of personal computer can
be used as a host. Perhaps the feature of the host
that will impact performance the most is the system
bus bandwidth. Since large amounts of data may be
transferred from the host to recon�gurable coproces-
sor, a high bus bandwidth is preferred.

The RPU is an array of several FPGA devices. The
width of the array is matched to the bus width of the
memory system. Since the software uses a data
ow
graph to con�gure the RPU, a top to bottom
ow
through the RPU is desirable. While most FPGA de-
vices supply con�gurable I/O pins at the perimeter of
the device, input of data at the top of the array and
output at the bottom will be the standard con�gura-
tion.

While the width of the RPU array will be deter-
mined by the RPU-memory bus, the depth of the RPU
is arbitrary. Since some algorithms can utilize a very
deep pipeline, it is desirable to make the RPU array
as deep as practical.

The last, and perhaps most important part of the
system, is the memory. The use of a vector based
programming model will e�ect the design of the mem-
ory system. Since the RPU is pipelined, the memory

Memory RPU

Figure 9: A recon�gurable system.

bandwidth requirements for the system can be very
high.

Data reference patterns, however, will be very de-
terministic. Since the vector is the primary data type,
data will be processed from sequential memory loca-
tions. Because of this simple memory addressing pat-
tern, it is possible to provide a high-performance mem-
ory system at a modest cost.

One approach is to use memory that provides fast
serial access. Video RAM is an ideal candidate for this
application. The serialized video outputs can be used
to feed sequentially stored vectors to the input of the
RPU, while the second port of the video RAM can be
used to store the output results.

Another approach is to use interleaved memory.
Since all accesses to memory within a vector operation
are sequential, the use of several banks of interleaved
memory can provide the sustained bandwidth neces-
sary to supply data to the RPU. Interleaving should
allow slower and denser DRAM to be used in the place
of SRAM.

12 Summary and Conclusions

Several other algorithms have been coded using the
data parallel model, but space prohibits their discus-

sion here. The literature for SIMD processors o�ers
many examples of large, real-world problems that can
be solved with this model of computation.

The vector based data-parallel model of computa-
tion is well suited to recon�gurable architectures. The
use of vector operations permits large amounts of cal-
culation to be performed with occasional recon�gura-
tion. In addition, the parallel pre�x or scan operators
used by this model have a particularly e�cient imple-
mentation.

Translations of the data parallel algorithms to cus-
tom circuits has been shown to be a straightforward
mapping of the algorithm data
ow graph to RPU
hardware. The use of the data
ow graph in the al-
gorithm implementation permits both temporal and
spatial parallelism to be exploited. In addition, sev-
eral established optimizations can be used to reduce
the complexity of the circuit.

Finally, the vector model permits extensive use of
pipelining to increase performance. An added bene-
�t of the data parallel model is that it eliminates the
data dependency problems that often restrict the per-
formance of pipelined systems. The vector model also
allows simple and inexpensive memory systems to be
used to provide the high bandwidth required by the
system.

Recon�gurable architectures promise very high per-
formance at a very low cost. Languages based on the
data parallel model should make these architectures
easy to program without sacri�cing performance.

References

[1] Peter M. Athanas. An Adaptive Machine Ar-

chitecture and Compiler for Dynamic Proces-

sor Recon�guration. Technical Report LEMS-
101, Brown University, Division of Engineering,
February 1992.

[2] J. Backus. Can programming be liberated from
the von Neumann style? a functional style
and its algebra of programs (1977 ACM Turing
Award lecture). Communications of the ACM,
21(8):613{641, August 1978.

[3] Guy E. Blelloch. Vector Models for Data-Parallel

Computing. The MIT Press, Cambridge, MA,
1990.

[4] Patrice Bertin, Didier Roncin, and Jean
Vuillemin. Introduction to Programmable Active

Memories. Technical Report 3, DEC Paris Re-
search Laboratory, 1989.

[5] Maya Gokhale, WilliamHolmes, Andrew Kosper,
Dick Kunze, Dan Lopresti, Sara Lucas, Ronald
Minnich, and Peter Olsen. SPLASH: a recon�g-
urable linear logic array. In International Confer-

ence on Parallel Processing, pages I{526{I{532,
1990.

[6] W. Daniel Hillis. The Connection Machine. The
MIT Press, Cambridge, MA, 1985.

[7] Philip J. Hatcher and Michael J. Quinn. Data{

Parallel Programming on MIMD Computers. The
MIT Press, Cambridge, MA, 1991.

[8] T. A. Kean. Con�gurable Logic: A Dynamically

Programmable Cellular Architecture and its VLSI

Implementation. PhD thesis, University of Ed-
inburgh, Department of Computer Science, Jan-
uary 1989.

[9] Peter M. Kogge. The Architecture of Pipelined

Computers. McGraw{Hill, 1981.

[10] Clyde P. Kruskal, Larry Rudolph, and Marc Snir.
The power of parallel pre�x. In Proceedings of the

International Conference on Parallel Processing,
pages 180{185, August 1985.

[11] H. T. Kung. Why systolic architectures? Com-

puter, 15(1):37{46, January 1982.

[12] Jouko Viitanen, Tapio Korpiharju, and Hannu
Kiminkinen. Mapping algorithms onto the TUT
cellular array processor. In International Con-

ference on Application Speci�c Array Processors,
1990.

