
Debug of Recon�gurable Systems

Tim Price, Delon Levi and Steven A. Guccione

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124 (USA)

ABSTRACT

While FPGA design tools have progressed steadily, availability of tools to aid in debug of FPGA-based systems

has lagged. In particular, support for debug of run-time recon�gurable (RTR) systems have been all but absent.

In this paper we describe DDTScript, a scripting language to aid in design, debug and test of RTR systems. The

DDTScript language is fully integrated with the BoardScopetm graphical debug tool and permits parameterization,

instantiation, and removal of Run-time Parameterizable (RTP) Cores and other con�gurable circuit components.

DDTScript also provides control of system level resources and supplies access to device state and con�guration data.

DDTScript is currently used not only to test and debug RTP Cores, but to construct and interact with complete

designs. DDTScript is currently part of the JBitstm tool suite and supports the Xilinx Virtextm family of FPGA

devices.

Keywords: Debug, Regression Testing, Run-Time Recon�guration, Virtex, Script, FPGA

1. INTRODUCTION

While FPGA design tools have progressed steadily, availability of tools to aid in debug of FPGA-based systems has

lagged. Some early systems supplied simple debug aids as part of their development environments, but the debug

tool portions of these systems were often thinly documented.1{5 Recently, more sophisticated debug tools have found

their way into mainstream software from FPGA vendors. While debug support for mainstream development appears

to be receiving more attention, recent work in Run-Time Recon�gurable (RTR) circuits has provided new challenges

for debug tools. Early work aimed at debug of RTR circuits6,7 is actively being enhanced to provide support for

these new debug activities.

One of the outstanding problems in debugging and testing such circuitry is that the number of possible con�gura-

tions can be quite large. A Run-Time Parameterizable (RTP) core implementing a constant multiplier, for instance,

can have parameters for bit width and for the multiplication constant. This provides a large number of possible

instantiations, which are not practical to test exhaustively. The problem of testing circuits in this environment

becomes more similar to that of testing software, where analysis and the testing of boundary conditions is the only

practical approach. To better support this style of circuit debug and test, a scripting capability has been integrated

into the existing RTR debug tools.

This scripting capability, DDTScript, permits circuits to be parameterized, instantiated and downloaded into

hardware and tested. This testing can be performed using the standard debug tools and does not require additions

to the existing design or new passes through the design tools. In addition, the ability to save scripting commands

in external �les and run them in a batch mode provides a way to perform large numbers of tests and to perform

regression tests on modi�ed circuits. This capability is useful in producing reliable circuits and libraries.

2. OVERVIEW

DDTScript was built using the JBits tool suite from Xilinx.8 The JBits tool suite is a set of Java classes which

provide an application programmer interface (API) into the con�guration bitstream for the Xilinx Virtextm family

of FPGA devices. All con�gurable resources in these devices can be individually programmed using this interface.

Run-Time Parameterizable (RTP) Cores are parameterizable logic cores that are constructed and instantiated

at run-time.9 These circuits can be con�gured and recon�gured based on information supplied in real-time by user

Further author information: (Send correspondence to Tim Price)

Tim Price: E-mail: Tim.Price@xilinx.com

Delon Levi: E-mail: Delon.Levi@xilinx.com

Steven A. Guccione: E-mail: Steven.Guccione@xilinx.com

software, user input or sensor data. RTP Cores utilize a certain number of Con�gurable Logic Blocks (CLBs) on

the device when created and contain a state variable which helps track the operation of the circuit. For example, a

counter core might designate its output bits in the state variable. This would permit the state of the counter circuit

to be easily accessed and examined during operation.

Rather than attempting to manipulate FPGA resources directly, DDTScript uses the RTP Core abstraction as

the primary interface to the hardware. As a practical decision, DDTScript is targetted at debugging RTP Cores

and sytems composed to RTP Cores, so this level of granularity is appropriate. Additionally, using a higher level

abstratcion such as an RTP Core permits DDTScript to be architecture independent. Designs using di�erent FPGA

device architectures and di�erent RTP Core implementations can use the same DDTScript commands and scripts

for design, debug and test.

While DDTScript can be used as a stand-alone text-based tool, it is also integrated into the BoardScope interactive

graphical debug tool. BoardScope supports the single and multiple stepping of the system clock and interactive

probing of FPGA resources. It also displays RTP Core layout information as well as graphical and waveform state

data. Like all of the tools in JBits, DDTScript interfaces to hardware and hardware simulators via the XHWIFtm

interface.7 This interface provides portable access to Virtex hardware and simulation environments. The use of

XHWIF allows applications to be moved to di�erent platforms, typically without recompilation.

3. DDTSCRIPT

DDTScript is an interactive, RTP Core-based command-line tool with a relatively simple syntax. DDTScript can be

used to parameterize, intstantiate, remove and clock RTP Cores on FPGA devices in real time. Using DDTScript does

not require that designs be recompiled or in any way passed through design tools. It is integrated as a command-line

interface in the BoardScope debugger and it can alse run as a stand-alone command-line application.

The commands used by DDTScript require no speci�c knowledge of hardware description or programming lan-

guages. Table 1 shows the complete list of commands supported by DDTScript. The syntax is always the command

name followed by parameters. Not all commands require parameters. If an incompletely parameterized command is

issued by the user, the correct command usage is displayed.

Table 1. DDTScript commands.

RESET Resets board and bitstreams

LOAD Loads a bitstream �le

CONFIGURE Con�gures FPGA device with bitstream

ADD Adds Core to bitstream

REMOVE Removes Core from bitstream

READBACK Reads back device data into bitstream

STEP Steps board clock

DEVICES Lists devices and types

SELECT Selects FPGA device on board

LIST Lists available Cores, constructors and variables

SET Sets user variables

STATUS Displays status of added Cores

WRITE Writes out a static bitstream �le

HELP Displays list of commands

EXIT Exits the stand-alone application.

Some DDTScript commands interact directly with the hardware while others are used for control and to provide

debug information. The �rst group of commands in Table 1 all e�ect the hardware. The second group of DDTScript

commands are used to control and interact with the debug environment.

Constructing and testing a circuit using DDTScript follows a process similar to other design and debug environ-

ments. First, a circuit is constructed by instantiating one or more RTP Cores to an FPGA con�guration bitstream

using the ADD command. This con�guration bitstream is downloaded to the FPGA device or simulation envi-

ronment with the CONFIGURE command. The circuit may then be clocked with the STEP command and state

data read back using the READBACK command. This state data may be displayed using the STATUS command.

These results can then be processed and compared to expected values. Script �les can be created and piped into

DDTScript from the command-line. This permits automation of the testing process, allowing cores to be tested with

many di�erent inputs.

Finally, DDTScript also has the ability to be used as a simple design tool. Once circuits are constructed,

DDTScript can write out static bitstream �les with the WRITE command. These bitstream �les are snapshots of

the current FPGA con�guration and can be used to con�gure another FPGA device at a later time. Because these

�les are standard Xilinx confoguration bitstreams they may be used to interface with other existing tools and systems

just as ony other bitstream generated with the mainstream design tools.

4. DEBUGGING A MULTIPLIER

This section demonstrates how an RTP Core can be tested and debugged using DDTScript and the BoardScope debug

tool. Figure 1 shows the script �le on which this example is based. A constant multiplier core will be exercised with

a test input and the result reported.

Set up variables

set row=2

set col=2

set size=8

set steps=size+1

set constantvalue=91

set multconstant=243

Reset the board and load in a bitstream

reset

load ../data/null300822.bit

Add a constant valued core and

place the constant multiplier beside it.

add constant row col size constantvalue

set col=col+1

add constmult row col size multconstant true

configure

Step the clock

step steps

Readback the data and display the results

readback

status

Figure 1. DDTScript script �le to test a multiplier.

This script begins with several SET commands. These use used to initialize local variables used by the script.

The names of these variables are user-de�ned and may appear anywhere in the script. Row and col are parameters

which represent the coordinates of the origin CLB for the circuit. Size is another circuit parameter which represents

the number of CLBs that the circuit will occupy. Other variables include the number of steps the FPGA device clock

should be cycled and the constant parameter values for the cores. While the use of named variables is recommended

and greatly enhances the clarity of the script, DDTScript accepts integer values and expressions for parameters as

well as user variables.

The hardware or simulation test environment is then reset using the RESET command and and an initial con-

�guration bitstream is loaded into the system using the LOAD command. This particular bitstream �le contains no

logic or routing resources and is a \clean slate" used to build new circuits. It is also possible to use con�guration

bitstreams containing con�gured circuits that may be useful during testing.

Figure 2. BoardScope debugger Core View showing the added cores.

Once this initial con�guration bitstream is loaded, the cores may be added. The �rst RTP Core is a constant

value Core which is used to supply inputs to the constant multiplier. The constant core is created with parameters

that include the number of CLBs occupied, the constant value and the CLB coordinates of the Core origin. The

second RTP Core created is the constant valued multiplier, constmult. This is placed one CLB column to the right

of the constant core, as indicated by the incremented col variable.

Figure 3. BoardScope debugger State View showing result of multiplication.

As indicated by the parameters to the RTP Cores, the con�gured circuit now consists of a multiplier which

multiplies by 243 connected to a constant test input core with a value of 91. Once this circuit is successfully

instantiated, the CONFIGURE command is issued to download the con�guration bitstream to the device. This

con�guration data is downloaded to device 0 in the system under test. By default, DDTScript selects device 0 of the

board. If the system contains multiple devices, the SELECT command may be used to select the device currently

under test.

Figure 2 shows the the con�gured circuit containing the constant and the constant multiplier RTP cores in the

BoardScope graphical core view. DDTScript commands can be seen in the status area.

To exercise the multiplier core, the device clock needs to be stepped. The STEP command cycles the device clock

for the requested number of steps. The constant multiplier core is pipelined and requires a number of steps equal to

the number of bits in the test input. The extra clock step is necessary to initialize the device capture
ip-
ops that

are used to capture state data.

The result of the multiplication is found by reading back the device data and asking for the constmult core status.

Figure 3 shows the result of the multiply in the BoardScope state view. The STATUS command displays the state of

each of the cores. As expected, the multiplier has a state value of 22113, which is 91 times 243. Had the actual result

not matched what was expected, the BoardScope debugger could then be used to probe and examine the circuit.

5. CONCLUSIONS AND FUTURE WORK

DDTScript provides simple, e�ective design, debug and test support for run-time recon�gurable systems. Because

DDTScript uses a small number of simple commands, core-based designs can be quickly generated and tested even

during recon�guration. This is especially useful for testing of RTP Core libraries. Test scripts can be produced

and used to produce a test suite useful for evaluationa and regression testing. And because DDTScript operates at

the Core level, scripts are architecture independent. Given equivalent core libraries, DDTScript scripts should run

unmodi�ed on a variety of architectures.

Future work includes adding direct routing support. Rather than requiring RTP Cores to provide core inter-

connection, future versions of DDTScript will have direct access to the routing API. Plans also include support for

partial recon�guration to reduce communication overheads with hardware. Finally, support for new Xilinx FPGA

families is expected.

Both the BoardScope debug tool and DDTScript are available with the Xilinx JBits tool suite.

ACKNOWLEDGMENTS

This work was partially funded by DARPA under contract DABT-63-99-3-004 in the Adaptive Computing Systems

(ACS) program.

REFERENCES

1. H. H�ogl, A. Kugel, J. Ludvig, R. Manner, K. No�z, and R. Zoz, \Enable++: A second generation FPGA

processor," in IEEE Symposium on FPGAs for Custom Computing Machines, P. Athanas and K. L. Pocek,

eds., pp. 45{53, IEEE Computer Society Press, (Los Alamitos, CA), April 1995.

2. P. Bertin and H. Toutai, \PAM programming environments: Practice and experience," in IEEE Workshop on

FPGAs for Custom Computing Machines, D. A. Buell and K. L. Pocek, eds., pp. 133{138, IEEE Computer

Society Press, (Los Alamitos, CA), April 1994.

3. J. M. Arnold, \The splash 2 software environment," in IEEE Workshop on FPGAs for Custom Computing

Machines, D. A. Buell and K. L. Pocek, eds., pp. 88{101, IEEE Computer Society Press, (Los Alamitos, CA),

April 1993.

4. D. A. Clark and B. L. Hutchings, \Supporting FPGA microprocessors through retargetable software tools," in

IEEE Symposium on FPGAs for Custom Computing Machines, K. L. Pocek and J. Arnold, eds., pp. 195{203,

IEEE Computer Society Press, (Los Alamitos, CA), April 1996.

5. B. Heeb and C. P�ster, \Chamelon: A workstation of a di�erent colour," in Field-Programmable Gate Arrays:

Architectures and Tools for Rapid Prototyping, H. Gr�unbacher and R. W. Hartenstein, eds., pp. 152{161, 1992.

Proceedings of the 2nd International Workshop on Field-Programmable Logic and Applications, FPL 95. Lecture

Notes in Computer Science 705.

6. S. A. Guccione, \WebScope: A circuit debug tool," in Field-Programmable Logic: From FPGAs to Computing

Paradigm, R. W. Hartenstein and A. Keevallik, eds., pp. 308{315, Springer-Verlag, Berlin, August/September

1998. Proceedings of the 8th International Workshop on Field-Programmable Logic and Applications, FPL

1998. Lecture Notes in Computer Science 1482.

7. D. Levi and S. A. Guccione, \BoardScope: A debug tool for recon�gurable systems," in Con�gurable Computing

Technology and its use in High Performance Computing, DSP and Systems Engineering, Proc. SPIE Photonics

East, J. Schewel, ed., SPIE { The International Society for Optical Engineering, (Bellingham, WA), November

1998.

8. S. A. Guccione and D. Levi, \XBI: A java-based interface to FPGA hardware," in Con�gurable Computing:

Technology and Applications, Proc. SPIE 3526, J. Schewel, ed., pp. 97{102, SPIE { The International Society

for Optical Engineering, (Bellingham, WA), November 1998.

9. S. A. Guccione and D. Levi, \Run-time parameterizable cores," in Field-Programmable Logic and Applications,

P. Lysaght, J. Irvine, and R. W. Hartenstein, eds., pp. 215{222, Springer-Verlag, Berlin, August/September

1999. Proceedings of the 9th International Workshop on Field-Programmable Logic and Applications, FPL

1999. Lecture Notes in Computer Science 1673.

10. Xilinx, Inc., The Programmable Logic Data Book, 1999.

