
GeneticFPGA:  Evolving Stable Circuits on Mainstream FPGA Devices

Delon Levi  Steven A. Guccione
Xilinx Inc. Xilinx Inc.

2100 Logic Drive 2100 Logic Drive
San Jose, Ca 95124 San Jose, CA 95124

Delon.Levi@xilinx.com Steven.Guccione@xilinx.com

Abstract

GeneticFPGA is a Java-based tool for evolving digital
circuits on Xilinx XC4000EX™ and XC4000XL™ devices.
Unlike other FPGA architectures popular with Evolutionary
Hardware researchers, the XC4000 series architectures
cannot accept arbitrary configuration data.  Only a small
subset of configuration bit patterns will produce operational
circuits; other configuration bit patterns produce circuits
which are unreliable and may even permanently damage the
FPGA device.  GeneticFPGA uses novel software
techniques to produce legal circuit configurations for these
devices, permitting experimentation with evolvable
hardware on the larger, faster, more mainstream devices.
In addition, these techniques have led to methods for
evolving circuits which are neither temperature, voltage,
nor silicon dependent.  An 8-bit counter and several digital
frequency dividers have been successfully evolved using this
approach. GeneticFPGA uses Xilinx’s JBits™  interface to
control the generation of bitstream configuration data and
the XHWIF portable hardware interface to communicate
with a variety of commercially available FPGA-based
hardware.  GeneticFPGA, JBits, and XHWIF are currently
being ported to the Xilinx Virtex™ family of devices, which
will provide greatly increased reconfiguration speed and
circuit density.

1 Introduction

Evolutionary Hardware is a relatively new field that uses
genetic algorithms to produce digital and analog circuits.
Thompson’s [1] groundbreaking work produced simple
functional circuits, but these circuits operated primarily in
the analog domain and were temperature, voltage, and
silicon dependent.  Korkin and de Garis’s [4] ongoing work
resolves these problems by evolving register values in pre-
defined digital macros.  Each of these macros, however,
consumes large amounts of resources.  In addition, both

methodologies use proprietary hardware and non-
mainstream FPGA devices which are of limited availability.

GeneticFPGA is a Java-based toolkit for evolving circuits
on mainstream Xilinx XC4000EX/XL FPGAs.  This
software is highly portable and operates on a variety of
commercial-off-the-shelf FPGA hardware platforms. In
addition to using standard hardware platforms,
GeneticFPGA uses novel techniques to evolve circuits
which are temperature, voltage, and silicon independent.

2 The Algorithm Flow

As is standard in genetic algorithms, a population of
circuits are produced, tested, scored, and selected based on
survival of the fittest principals for reproduction and
creation of the next generation.  In GeneticFPGA, a single
chromosome represents each circuit, which specifically is a
1-dimensional array of 1s and 0s in RAM.   The codes on
the chromosome are delineated into Configurable Logic
Block (CLB) structures, the basic repeating logical unit in
FPGAs, with the CLB structures further broken down into
genes that define the state of Look-Up-Tables (LUTs), flip
flop configurations, and input/output routing (see Figure 1).
In this way, each CLB in the area undergoing evolution has
a specific sub-string on the chromosome.

At the beginning of each chromosome read, a bitstream
with “null” circuit is called.  A null circuit has all of the
interconnect disabled and all of the CLBs in a zeroed-out
state.  As the codes on the chromosome are read, the JBits
configuration bitstream interface is used to instantiate the
corresponding circuit structures in the configuration
bitstream.  After the device has been configured, all CLBs
in the evolved area are fully specified.  At this point, a
complete digital circuit in the specified area has been
created.



1

0

.

1

.

.

.

1

0

1

.

Chromosome

Genes for
CLB(0, 0)

Genes for
CLB(n-1, n-1)

FPGA Bitstream

Evolved CLB Area

CLB

Figure 1 - CLB Gene Mapping

In addition to evolving a circuit in a region of the FPGA,
it is also possible to set up other more permanent structures
to facilitate testing and scoring of the evolving circuits.
These test structures are typically used to supply input
vectors and read results from the evolving circuit.   The
alternative to this test structure approach is to use dedicated
device IO pins to perform this testing.  Using IO pins in this
manner will typically be platform-dependent.  Test
structures built on the FPGA device permit test vectors to be
supplied and results returned via the standard configuration
and readback port of the device.  This allows a very large
degree of platform independence.

Once all of the structures have been instantiated in the
configuration bitstream, it is downloaded to an FPGA using
the XHWIF portable hardware interface.   The configured
circuit is run for a specified number of clock cycles or until
a specified amount of time has elapsed, and then the
configuration bitstream is read back from the FPGA.   The
final state of the circuit is extracted from the test structures
in the bitstream and is used to determine how well the
circuit performed its expected function, which is then
translated into a score.  The score is associated with the
circuit and the corresponding chromosome.

The translation of the chromosome into a configuration
bitstream, the bitstream download, the bitstream readback
and the scoring processes are performed on each of the
chromosomes in the population as shown in Figure 2.
Using fitness proportionate selection and optionally elitism,
chromosomes are selected for production of next generation
chromosomes.  Reproduction includes one-point crossover,
straight copy, copy with mutation, and elitism. Elitism is
either enabled or disabled.  The other schemes are selected
probabilistically, according to weights the user sets at the
outset.

3 The Software Architecture

Figure 3 shows a diagram of the GeneticFPGA software
structure.  The GeneticAlgorithm module provides all of the
chromosome data structures and the reproductive methods

1

0

0

1

0

1

0

1

0

1

1

Chromosome

1 0 1 1 0 1
1 1 1 0 0 1
0 1 0 1 0 0

FPGA Circuit
Configuration

Bitstream

Xilinx
FPGA

Execute Circuit
on Hardware

1 0 1 1 0 1
1 0 1 0 0 0
1 1 0 1 1 0

FPGA State
Readback
Bitstream

27

Score

Translate
using JBits

Configure
using XHWIF

Readback
 using XHWIF

Extract State
using JBits

Test Circuits

Insert
using JBits

Figure 2 - The Algorithm Flow



GeneticFPGAGeneticAlgorithm

Translators

XHWIF

JBits

Bitstreams

Mappers

Figure 3 - Software Architecture

for creating next generation chromosomes.   This
component is defined generically so that it can be modified
by users to solve other  problems that can be mapped to a
genetic algorithm.

The Mapper module determines which circuit resources
are defined on the chromosome and the location of the
corresponding genes on the chromosome.  As the
chromosome is read, the Mapper decides which circuit-gene
is specified, and then calls a translator to transform that
information into a circuit instantiation in the bitstream.
GeneticFPGA comes with two mappers, one for creating
digital synchronous circuits and one for creating
asynchronous analog circuits.  Additional mappers can be
added to the system.

The Translator module is a set of functions that convert
the 1s and 0s in the chromosome genes into 1s and 0s in the
circuit bitstream.  Each function translates a particular gene
into a sub-circuit in the bitstream.  JBits is a software
interface to the Xilinx XC4000EX/XL bitstream which
allows the translators in GeneticFPGA to specify the logic,
placement, and routing of the circuit defined on the
chromosome.

Finally, XHWIF is used as a portable software interface to
various FPGA-based hardware platforms.  This interface
enables GeneticFPGA to download  configuration
bitstreams to live FPGAs, to advance the system clock, and
to readback the final state of the circuit to score its
performance. XHWIF also has a remote interface that
allows communication with boards plugged into networked
machines.  The XHWIF interface currently supports boards
from Annapolis Microsystems, MiroTech, TSI-

Telesys/LavaLogic, DEC/Compaq Research, GigaOps and
others.

Both the GeneticFPGA and the GeneticAlgorithm
modules are defined as “abstract” Java classes.  An abstract
class indicates that some methods (functions) may be
defined, but that others are left for the user to customize in a
subclass.  The user defines the methods in these subclasses,
and GeneticFPGA  uses the subclass to perform the
specified functions.

Within the GeneticAlgorithm class the evaluate() method,
which determines the scores for all the chromosomes, is left
abstract for definition in a subclass to define.   In defining
the evaluate() function, a user specifies how the
chromosomes are translated into problem specific data
structures and how these data structures are evaluated for
fitness.  For example, the GeneticFPGA class translates the
chromosomes into bitstream-based circuits and uses an
FPGA to determine fitness.  However, the
GeneticAlgorithm class can also be extended by the user
and tailored to solve other problems, including problems not
involving evolvable hardware or FPGAs.

4 The User Interface

Within GeneticFPGA the stimulus(), score(byte
bitstream[]), insertTest(byte bitstream[]), and output()
functions are left abstract for a subclass to define.  Any
software instruction involving the circuit operation is
included in the stimulus() method: incrementing the on-
board clock, driving input vectors, etc.   The score(byte
bitstream[]) method returns a score for the given
configuration  bitstream.  If the state of some external
device is used to measure the performance of the circuit,
then it can also be passed to the method as a byte array in
place of the bitstream.  The insertTest(byte bitstream[])
method is used to insert input and/or output test circuitry
into the bitstream.   The output() method is used to print and
store metrics on the state of the population at the end of
every generation.

To execute a class extended from either GeneticAlgorithm
or GeneticFPGA, the user passes parameters like the
population size, chromosome length, and number of
generations to the class constructor, and then calls the
start(), suspend(), resume(), or stop() methods to control the
execution flow.  Since these classes are threaded, multiple
instantiations of the inherited classes can be made, which
allows multiple populations to independently evolve in
parallel.  Since many FPGA-based hardware platforms use
multiple FPGAs, each population can evolve on a separate
device.  This can improve the solution search, since
multiple initial conditions and evolutionary paths may be
examined at the same time.



GeneticFPGA also has the capability to dynamically
relocate the CLB area undergoing evolution.  At the end of
each generation, the population can be moved to a new area
on the same FPGA device, moved to a different device on
the same board, or moved to devices on a different board.
Because all parts in the XC4000EX/XL family of FPGAs
use the same CLB, the relocation does not even have to be
to an identical FPGA device.  For example, in one
generation the population can be evaluated on a
XC4028EX, and on the next it can be evaluated on a
XC4085XL.  Of course, the test circuitry has to be relocated
along with the evolving circuit, but if the test circuitry is
resident on the device, the insertTest(byte bitstream[])
method easily allows this capability.  One use of this feature
is to permit asynchronous analog circuits to average out the
effects of local silicon, voltage, and temperature
irregularities.

5 Creating Stable Digital Circuits

One fundamental and seemingly unbreachable limitation
has restricted the general applicability of evolutionary
hardware: evolved circuits operate in the analog domain,
and are voltage and temperature sensitive, in spite of being
implemented on digital FPGAs.  This means that the FPGA
needs to operate in an environment where the temperature
and voltage are finely controlled.  Even then, circuits
evolved on one piece of silicon are not guaranteed to work
on another.  In this paradigm, every circuit has to be
optimized not only to solve the problem at hand, but also to
various irregularities of the particular silicon device on
which it is running.   This behavior has made evolved

circuits impractical for widespread commercial usage.
The source of this behavior is that the signals generated

from the evolved circuits are highly asynchronous.
Typically, the implementations employ only asynchronous
logic gates.  In a large complex network, the gates give rise
to pulses with large time variances.   Some of the pulses are
shorter than the gate delays and some are shorter than the
transistor switching times.  If the pulse edges stream too
quickly for the transistors to saturate in either high or low
states, then for significant portions of time, the transistors
remain in intermediate analog states.

GeneticFPGA eliminates these problems by optionally
forcing the evolved circuits to use only synchronous signals.
Only the CLB flip-flop outputs are used to drive other CLB
inputs.  All of the flip-flops have a single non-gated clock
source.  The inverters on the flip-flop clock source are
disabled, as are the flip-flop asynchronous set and resets.
Finally the flip-flop transparent latch mode is disabled.
Using the FPGA device in this manner, the circuits
produced operate consistently across multiple devices and
behave consistently when reloaded onto the same device.
Removing these synchronous constraints produces circuits
much like their analog predecessors.  Circuits tend to
behave inconsistently across multiple devices and even
when reloaded onto the same device.

Evolved circuits are analyzed using the BoardScope
FPGA debug tool.  BoardScope allows graphical inspection
of a circuit’s behavior as it is operating on the FPGA device.
State changes in flip-flops are viewable in the main display,
and control such as clock single stepping is also provided.
It is also possible to probe individual CLBs and view the
configuration, including LUT values and internal CLB

Flip-Flop States in
Evolved CLB Area

Figure 4 - Asynchronous Circuit on 2 FPGAs



routing.  In typical usage, the best circuit is saved to a file
by GeneticFPGA and then downloaded and examined using
BoardScope.  For more detailed analysis, the best
individuals of each generation can be examined to see how
the circuits evolved.  Multiple circuits can be downloaded to
multiple FPGAs and their behavior compared side-by-side.

Figure 4 shows BoardScope viewing two circuits evolved
using the standard asynchronous mode.  Note the
differences in the flip-flop output states.  Clearly these
circuits are behaving differently on different devices.
Figure 5 shows the same circuit evolved using synchronous
mode, again on two different devices. Note that both
devices contain circuits behaving identically.  It is not
surprising that eliminating asynchronous feedback and using
flip-flops in digital circuits enable stable circuits to evolve;
these are the same techniques that engineers use to produce
stable circuits manually.

As proof of concept, several circuits were evolved: 4-bit
one-hot counter, 8-bit 1-hot counter, and several  frequency
dividers.  These macros proved challenging to produce. The
8-bit counter required 15 hours of processing to evolve a
correct solution and multiple tries until the correct
parameters and scoring functions were found.   A 16-bit 1-
hot counter was attempted, but a solution was not found in a
reasonable amount ot time.

An attempt at evolving a pattern recognizer was also
made.  A 7-bit value was fed to a 10x10 array of CLBs
operating in the digital domain.  The output (on the opposite
side of the matrix) was supposed to present a 1 if the input
had more 1s than 0s, otherwise present a 0.  The correlation

between the input and output remained at roughly 50%, the
initial value.  The nearly static 50% correlation indicated
that the evolved circuits were just generating random
patterns on the output, and were not generating
computational data paths between the inputs and outputs.

The limitted results are attributed to the exclusive use of
local interconnect.  Because local routing on
XC4000EX/XL FPGAs have a single driver, it provided the
simplest way to avoid contention.  Perhaps the use of non-
local routing will increase circuit evolvability and
functionality.

6 Conclusions and Future Work

The GeneticFPGA toolkit evolves circuits at the gate and
flip-flop level.  By forcing the evolutionary process to
follow synchronous design principles, GeneticFPGA may
be used to create stable digital circuits.  Although an FPGA
architecture that accepts random configuration data at the
hardware level is convenient for evolutionary hardware,
GeneticFPGA demonstrates that this is not a requirement.
Illegal and undesirable configurations can easily be avoided
using software techniques.  It is interesting that these
techniques require only RAM-based configurable FPGA
devices.  Given software for producing legal circuit
configurations, this approach would work on nearly any
SRAM FPGA architecture, including those such as the
Xilinx XC2000 - the first FPGAs developed 14 years ago.

Flip-Flop States in
Evolved CLB Area

Figure 5 - Synchronous Circuit on 2 FPGAs



New mainstream architectures, like the Virtex FPGA
should allow more complex evolutionary circuits to evolve.
The configuration and readback ports, the primary speed
bottlenecks on XC4000EX/XL FPGAs, are approximately
50 times faster on Virtex architecture.  In addition, the
greater gate densities should allow larger evolved circuits
and test circuits.  The richer and more regular routing in
Virtex, coupled with the use of local and global lines,
should also allow greater flexibility for non-trivial circuits
to arise. 

References

[1] A. Thompson, "Silicon Evolution", in Proceedings of
Genetic Programming 1996 (GP96),  J.R. Koza et al. (Eds.), pp.
444-452, MIT Press, Cambridge, Ma, 1996.

2 A. Thompson, "On the Automatic Design of Robust
Electronics Through Artificial Evolution", in Proc. 2nd Int. Conf.
on Evolvable Systems: From Biology toHardware (ICES98), M.
Sipper, D. Mange & A. Péres-Uribe (Eds.), pp13-24, Springer-
Verlag,1998.

3 T.C. Fogarty, J.F. Miller, and P. Thomson., "Evolving Digital
Logic Circuits on Xilinx 6000 Family FPGAs", in Soft Computing
in Engineering Design and Manufacturing,
P.K. Chawdhry, R. Roy, and E.K. Pant (Eds.), pp. 299-305.
Springer-Verlag, 1998.

[4] M. Korkin, H. de Garis, F. Gers, and H. Hemmi, "CMB
(CAM-Brain Machine): A Hardware Tool which Evolves a Neural
Net Module in a Fraction of a Second and Runs a Million Neuron
Artificial Brain in Real Time", in Proceedings of Genetic
Programming 1997 (GP97),  J.R. Koza et al. (Eds)., pp. 498-503,
Morgan Kaufmann Publishers, San Francisco, Ca, 1997.

5 J. R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT Press, Cambridge,
Ma, 1992.

6 L. Davis, Handbook of Genetic Algorithms, International
Thomson Computer Press, London, 1996.

7 D. E. Goldberg, Genetic Algorithms in Search Optimization
and Machine Learning, Addison-Wesley Publishing Company,
Inc., Reading, Ma, 1989.

8 S. A. Guccione and D. Levi, "XBI: A Java-based interface to
FPGA hardware", in Confiurable Computing Technology and its
uses in High Performance Computing, DSP and Systems
Engineering, Proc. SPIE Photonics East,   J. Schewel (Ed.), SPIE
- The International Society for Optical Engineering, Bellingham,
WA, November 1998.

9 D. Levi and S. A. Guccione, "BoardScope: A Debug Tool for
Reconfigurable Systems", in Confiurable Computing Technology
and its uses in High Performance Computing, DSP and Systems
Engineering, Proc. SPIE Photonics East,   J. Schewel (Ed.), SPIE
- The International Society for Optical Engineering, Bellingham,
WA, November 1998.

10 Xilinx, Inc., The Programmable Logic Data Book, 1998.

11 N. Sitkoff, M. Wazlowski, A. Smith, and H. Silverman,
"Implementing a Genetic Algorithm on a Parallel Custom
Computing Machine", in IEEE Symposium on FPGAs for Custom
Computing Machines, Peter Athanas and Kenneth L. Pocek (Ed.),
pp. 180-187, IEEE Computer Society Press, Los Alamitos, CA,
April 1995.

12 P. Graham and B. Nelson, "Genetic Algorithms in Software
and in Hardware - A Performance Analysis of Workstations and
Custom Computing Machine Implementations", in IEEE
Symposium on FPGAs for Custom Computing Machines, Kenneth
L. Pocek and Jeffrey Arnold (Ed.), pp. 216-225, IEEE Computer
Society Press, Los Alamitos, CA, April 1996.

13 I. M. Bland and G. M. Megson, "The Systolic Array Genetic
Algorithm, an Example of Systolic Arrays as a Reconfigurable
Design Methodology", in IEEE Symposium on FPGAs for Custom
Computing Machines, Kenneth L. Pocek and Jeffrey Arnold
(Eds.), pp. 260-261, IEEE Computer Society Press, Los Alamitos,
CA, April 1998.

14 P. Graham and B. Nelson, "A Hardware Genetic Algorithm
for the Travelling Salesman Problem on SPLASH 2" in Field-
Programmable Logic and Applications, Will Moore and Wayne
Luk (Eds.), pp. 352-361, Springer-Verlag, Berlin,
August/September 1995. Proceedings of the 5th International
Workshop on Field-Programmable Logic and Applications, FPL
1995. Lecture Notes in Computer Science 975.

15 M. Mitchell, J. P. Cructhfield, and R. Das, "Evolving Cellular
Automata to Perform Computations", in Handbook of
Evolutionary Computation, T. Back, D. Fogel, and Z. Michelwicz
(Eds.), Oxford University Press, Oxford, 1997.

16 T. Toffoli and N. Margolus, Cellular Automata Machines: A
New Environment for Modeling, MIT Press, Cambridge, Ma,
1987.

17 R. Dawkins, The Blind Watchmaker, W. W. Norton &
Company, New York , NY, 1996.

18 J. H. Holland, Hidden Order, Addison-Wesley Publishing
Company, Reading, Ma, 1995.

                                                          
  Patents Pending


