
The Java Environment for Recon�gurable

Computing

Eric Lechner and Steven A. Guccione

Xilinx Inc.
2100 Logic Drive

San Jose, CA 95124 (USA)

Eric.Lechner@xilinx.com
Steven.Guccione@xilinx.com

Abstract. The Java Environment for Recon�gurableComputing (JERC)
is a software environment for recon�gurable coprocessor applications.

This environment consisting of only a standard Java compiler and a set
of libraries. Using JERC, con�guration, recon�guration and host run-

time operation is supported. JERC also features design compile times on

the order seconds and built-in support for parameterized macros.

1 Introduction

In recent years, there has been an increasing interest in recon�gurable logic based

processing. These systems attempt to use recon�gurable logic to implement al-

gorithms directly in hardware, thus increasing performance.

By one count, at least 50 di�erent hardware platforms have been built to

investigate this novel approach to computation [5]. Unfortunately, software seems

to lag behind hardware in this area. Most systems today employ traditional

circuit design techniques, then interface these circuits to a host computer using

standard programming languages.

Work done in high-level language support for recon�gurable logic based com-

puting currently falls into two major approaches. The �rst approach is to use a

traditional programming language in place of a hardware description language

[2] [6]. This still requires software support on the host processor.

The second major approach is compilation of standard programming lan-

guages to recon�gurable logic coprocessors. These typically attempt to detect

computationally intensive portions of code and map them to the coprocessor

[3] [4] [7] [9] [10] [8]. These compilation tools, however, are usually tied to tra-

ditional placement and routing back-ends and have relatively slow compilation

times. They also provide little or no run-time support for dynamic recon�gura-

tion.

The Java Environment for Recon�gurable Computing (JERC) represents a

novel approach to hardware / software codesign for recon�gurable logic based

coprocessors. Using the JERC libraries and standard Java, con�guration, recon-

�guration and host interface software for coprocessing applications is supported

in a single piece of code. Additionally, since this tool does not make use of the tra-

ditional placement and routing approach to circuit synthesis, compilation times

are on the order of seconds. This combines to produce a development environ-

ment which very closely resembles those used for modern software development.

2 The Design Flow

Design of an application using a recon�gurable logic coprocessor currently re-

quires a combination of two distinct design paths. The �rst, and perhaps most

signi�cant portion of the e�ort involves circuit design using traditional CAD

tools. This design path for these CAD tools typically consists of entering a de-

sign using a schematic editor or hardware design language, generating a netlist

for this design, importing this netlist into an FPGA placement and routing tool,

which �nally generates a �le used to con�gure the FPGA logic.

Schematics/
HDL

Netlister Netlist
Place
 and
Route

Bitstream

Target
Hardware

User
Code

ExecutableCompiler

Fig. 1. Traditional design ow.

Once the con�guration data has been produced, the next task is to provide

software to interface the host system to the recon�gurable logic coprocessor.

This task is usually completely decoupled from the task of designing the circuit,

and hence is often di�cult and error-prone. This dual path design ow is shown

in Figure 1.

In addition to the problems of interfacing the hardware and software in this

environment, there is also the problem of design cycle time. Any change to the

circuit design requires a complete pass through the hardware design tool chain.

This process is time consuming, with the place and route portion of the chain

typically taking several hours to complete.

Finally, this approach provides no support for recon�guration. The tradi-

tional hardware design tools provide support almost exclusively for static design.

It is even di�cult to imagine constructs to support run-time recon�guration in

environments based on schematic or HDL design entry.

In contrast, the JERC environment consists of a library of functions which

permit logic and routing to be speci�ed and con�gured in a recon�gurable logic

device. By making calls to these library functions, circuits may be con�gured

and recon�gured. Additionally, host code may be written to interact with the

recon�gurable hardware. This permits all design data to reside in a single system,

often in a single Java source code �le.

Target
Hardware

Executable
Compiler

JavaUser
Java
Code

 JERC
Libraries

Fig. 2. JERC design ow.

In addition to greatly simplifying the design ow, as shown in Figure 2, the

JERC approach also tightly couples the hardware and software design processes.

Design parameters for both the recon�gurable hardware and the host software

are shared. This coupling provides better support for the task of interfacing the

logic circuits to the software.

3 The JERC Abstraction

JERC takes a layered approach to abstracting the recon�gurable logic. At the

lowest layer, Level 0, JERC supports all accessible hardware resources in the

recon�gurable logic. Extensive use of constants and other symbolic data makes

Level 0 usable, in spite of the necessarily low level of abstraction.

The current platform for the JERC environment is the XC6200DS Develop-

ment System [12]. This system consists of a a PCI board containing a Xilinx

XC6216 FPGA [11]. In the XC6200, Level 0 support consists of abstractions for
the recon�gurable logic cells and all routing switches, including the clock rout-

ing. The code for Level 0 is essentially the bit-level information in the XC6200
Data Sheet (cite data sheet) coded into Java.

While Level 0 provides complete support for programming all aspects of

the device, it is very low level and may be too tedious and require too much

specialized knowledge of the architecture for most users. Although this layer

is always available to the programmer, it is expected that level 0 support will

function primarily as the basis for the higher layers of abstraction. In this sense,

Level 0 is the \assembly language" of the JERC system.

Above the Level 0 abstractions is the Level 1 abstraction. This abstraction

permits simpler access to logic de�nition, clock and clear routing and the host

interface.

The most signi�cant portion of the level 1 abstraction is the logic cell def-

inition. This permits cells in the XC6200 to be con�gured as standard logic

operators. Currently, AND, NAND, OR, NOR, XOR, XNOR, BUFFER and

INVERTER combinational logic elements are supported. These may take an

optional registered output. Additionally, a D ip-op, toggle ip-op and a reg-
ister logic cell is de�ned. All of these logic operators are de�ned exclusively using

JERC level 0 operations, and hence are easily extended. Figure 3 gives a diagram

of the Level 1 cell abstraction.

Clk

A
B

Sel

Nin

NoutSin

Sout

Ein Eout

WinWout

D QLogic

Clr

Fig. 3. The JERC Level 1 cell abstraction.

A second portion of the JERC Level 1 abstraction is the Register interface. In
the XC6200, columns of cells may be read or written via the bus interface. The

Register interface allows registers to be constructed and accessed symbolically.

In addition to the logic cell and register abstractions, the clock routing is

abstracted. Various global and local clock signals may be de�ned and associated

with a given logic cell.

4 A Counter Example

This section describes a simple counter based on toggle ip ops using the Level 1

abstraction. In less than 30 lines of code, the circuit is described and con�gured

and clocking and reading of the counter value is performed. In addition, the

structure of this circuit permits it to be easily packaged as a parameterized

object. Such and object based approach would permit counters of any size to be

speci�ed and placed at any location in the XC6200.

The implementation process is fairly simple. First, the logic elements required

by the circuit are de�ned. These circuit element de�nitions are abstractions and

are not associated with any particular hardware implementation.

Once these logic elements are de�ned, they may be written to the hardware,

con�guring the circuit. Once the circuit is con�gured, run time interfacing of

the circuit, usually in the form of reading and writing registers and clocking the

circuit, is performed. If the application demands it, the process may be repeated,

with the hardware being recon�gured as necessary.

The counter example contains 9 basic logic elements. Two of these are Regis-
ters which simply interface the circuit to the host software. These two registers

are used to read the value of the counter and to toggle a single ip op, producing

the local clock.

To support the ip ops in the XC6200, clock and clear inputs must also be

de�ned. The global clock is the system clock for the device and must be used as

the input to any writable register. In this circuit, the ip op which provides the

software controlled local clock must use the global clock.

The local clock is the output of the software controlled clock, and must be

routed to the toggle ip ops which make up the counter. Finally, all ip ops

in the XC6200 need a clear input. In this circuit, the clear input to all ip ops

is simply set to logic zero.

Nin

NoutSin

Sout

Ein Eout

WinWout

Nin

NoutSin

Sout

Ein Eout

WinWout

T Q

ClrClk

Fig. 4. The carry and toggle ip op cell de�nitions.

These four logic elements provide all of the necessary support circuitry to

read, write, clock and clear the hardware. The remaining logic elements are used

to de�ne the counter circuit itself.

The �rst logic element in the circuit is the clock. This is just a single bit

Register which is writable by the software. Toggling this register via software

control produces the clock for the counter circuit.

The next element is a toggle ip op, t�. This ip op is de�ned as having

an input coming from the west. This element provides the state storage for the

counter. Next, the carry logic for the counter is simply an AND gate with inputs

from the previous stage and the output of the current stage. This generates

the \toggle" signal for the next stage of the counter. Figure 4 gives a graphical

representation of these two logic cells.

Finally, a logic one cell is implemented for the carry input to the �rst stage

of the counter. Figure 5 give the JERC code for describing the basic logic ele-

ments. The pci6200 object passed to each of the logic de�nitions is the hardware

interface to the XC6200DS PCI board.

Pci6200 pci6200 = new Pci6200N(null); // Hardware interface

pci6200.connect();

Register counterReg = new Register(COLUMN, counterMap, pci6200);

Register clockReg = new Register(COLUMN, clockMap, pci6200);

ClockMux localClock = new ClockMux(ClockMux.CLOCK IN);

ClockMux globalClock = new ClockMux(ClockMux.GLOBAL CLOCK);

ClearMux clear = new ClearMux(ClearMux.ZERO);

Logic tff = new Logic(Logic.T FLIP FLOP, Logic.EAST);

Logic clock = new Logic(Logic.REGISTER);

Logic one = new Logic(Logic.ONE);

Logic carry = new Logic(Logic.AND, Logic.NORTH, Logic.WEST);

carry.setEastOutput(Logic.NORTH); // Set carry output

Fig. 5. The logic element de�nition code.

Once this collection of abstract logic elements is de�ned, they may be in-

stantiated anywhere in the XC6200 cell array. This is accomplished by making

a call to the write() function associated with each object. This function takes a

column and row parameter which de�ne the cell in the XC6200 to be con�gured.

Additionally, the hardware interface object is passed as a parameter. In this case,

all con�guration is done to pci6200, a single XC6200DS PCI board.

The code in Figure 7 performs all con�guration. In the for() loop, the carry
cells go in one column with the t� toggle ip ops in the next column. A local
clock and a clear is attached to each t� toggle ip op. A graphical representation

of the location of these cells is shown in Figure 6.

Below the for() loop, a constant \1" is set as the input to the carry chain.

Next the software controlled clock is con�gured. This is the clock object, with

its local Clock routing attached to the toggle ip ops of the counter. Finally,

the global clock is used to clock this software controlled clock.

Once the circuit is con�gured, it is a simple matter to read and write the

Register objects via the set() and get() functions. In Figure 8, the clock is toggled
by alternatively writing \0" and \1" to the clock register. The counter register
is used to read the value of the counter. Next to the code is an actual trace of

the execution of this code running on the XC6200DS development system.

While this is a simple example for demonstration purposes, it makes use of

all of the features of JERC. This includes register reads and writes, as well as

features such as software driven local clocking. Other more complex circuits have

been developed using JERC, but di�er primarily only in the size of the code, not

the number of features needed to provide system level support for recon�gurable

T Q

T Q

Q
VCC

Global_Clock GND

GND

GND

GND
COUNT[0]

COUNT[1]

COUNT[2]

Fig. 6. The relative locations of cells in the counter.

/* Configure cells */

for (i=ROW START; i<ROW END; i++) f // The counter

carry.write((COLUMN-1), i, pci6200);

tff.write(COLUMN, i, pci6200);

localClock.write(COLUMN, i, pci6200);

clear.write(COLUMN, i, pci6200);

g /* end for() */

one.write((COLUMN-1), (ROW START-1), pci6200); // Carry in

clock.write(COLUMN, (ROW START-1), pci6200); // Clock

localClock.set(ClockMux.NORTH OUT);

localClock.write(COLUMN, ROW START, pci6200);

globalClock.write(COLUMN, (ROW START-1), pci6200);

Fig. 7. The con�guration code.

for (i=0; i<5; i++) f
clockReg.set(0); // Toggle clock

clockReg.set(1);

System.out.println("Count: " +

counterReg.get());

g /* end for() */

C:\java\JERC>java Counter

Count: 0

Count: 1

Count: 2

Count: 3

Count: 4

C:\java\JERC>

Fig. 8. The run time code and the execution trace.

processing.

5 Drawbacks of JERC

While JERC provides a simple, fast, integrated tool for recon�gurable logic based

processing, there are still several drawbacks. First, JERC is currently a manual

tool. Since it is possible to perform recon�guration, it is necessary for the pro-

grammer to exercise tight control over the placement and routing of circuits.

For highly repetitive designs, this is not a problem, but using JERC for large,

unstructured designs is not recommended.

Also, JERC relys on abstractions to simplify the design process. Unfortu-

nately, with this abstraction and simpli�cation comes a loss of exibility. Many

hardware resources are ignored or abstracted away at the higher JERC levels. Of

course, Level 0 operation is always an option, but this requires detailed knowl-

edge of the underlying architecture, and may be quite tedious.

Finally, JERC currently provides no timing analysis of the underlying cir-

cuits. This is perhaps a more fundamental problem with recon�gurable systems

in general. If true dynamic recon�guration is possible, analyzing the possible

circuits is likely to prove to be a di�cult problem. But it should always be pos-

sible for the programmer to do simple critical path analysis, which should give

a reasonable upper bound on the clock speed.

6 Future Plans

Work on JERC is continuing. Three particular directions are being investigated.

First, the object oriented nature of Java permits libraries of parameterized

macrocell-like objects to be built. This could signi�cantly increase the produc-

tivity of users of JERC.
The second area of investigation is using JERC as a basis for a traditional

graphical CAD tool. While this would be useful for producing static circuits, it

is not clear how temporal recon�guration would be managed. It would, however,

trade very fast compilation times in exchange or the manual design style of

JERC.
The last area of investigation is higher levels of abstraction. One possibility

is to add some limited automatic placement and routing capability.

7 Conclusions

JERC represents a novel approach to recon�gurable computing. Using a single

inexpensive, o� the shelf development tool, circuits can be constructed, recon-

�gured and interfaced to host systems.

Perhaps more importantly, the compile times necessary to produce these

circuits and run-time support code is on the order of seconds. This is many

orders of magnitude faster than the design cycle time of traditional CAD tools.

This permits development in an environment that in nearly all ways operates

like a modern intergrated software development environment.

Early experiences has shown JERC to be a fast and friendly alternative to

existing approaches to algorithm development for recon�gurable computing.

Acknowledgements

Thanks to the engineering sta� of the Xilinx Development Corporation for

XC6200 and XC6200DS support. And thanks to Eric Dellinger for support of

the JERC concept.

References

1. Peter M. Athanas and Harvey F. Silverman. Processor recon�guration through

instruction-set metamorphosis. IEEE Computer, 26(3):11{18, March 1993.

2. David Galloway. The transmogri�er C hardware description language and compiler

for FPGAs. In Kenneth L. Pocek and Je�rey Arnold, editors, IEEE Symposium
on FPGAs for Custom Computing Machines, pages 136{144, Los Alamitos, CA,

April 1995. IEEE Computer Society Press.

3. Maya Gokhale and Aaron Marks. Automatic synthesis of parallel programs tar-
geted to dynamically recon�gurable logic arrays. In Will Moore and Wayne Luk,

editors, Field-Programmable Logic and Applications, pages 399{408, 1996. Pro-

ceedings of the 5th International Workshop on Field-Programmable Logic and
Applications, FPL 95. Lecture Notes in Computer Science 972.

4. Steven A. Guccione. Programming Fine-Grained Recon�gurable Architectures.

PhD thesis, The University of Texas at Austin, May 1995.

5. Steven A. Guccione. List of FPGA-based computing machines. World Wide Web
page http://www.io.com/~guccione/HW list.html, 1997.

6. Shaori Guo and Wayne Luk. Compiling ruby into FPGAs. In Will Moore and

Wayne Luk, editors, Field-Programmable Logic and Applications, pages 188{197,
1996. Proceedings of the 5th International Workshop on Field-Programmable Logic

and Applications, FPL 95. Lecture Notes in Computer Science 972.

7. Reiner W. Hartenstein, Alexander G. Hirschbiel, Michael Reidm�uller, Karin
Schmidt, and Michael Weber. A novel ASIC design approach based on a new ma-

chine paradigm. IEEE Journal of Solid-State Circuits, 26(7):975{989, July 1991.

8. Christian Iseli and Eduardo Sanchez. A C++ compiler for FPGA custom execution

unit synthesis. In Kenneth L. Pocek and Je�rey Arnold, editors, IEEE Symposium

on FPGAs for Custom Computing Machines, pages 173{179, Los Alamitos, CA,

April 1995. IEEE Computer Society Press.

9. James B. Peterson, R. Brendan O'Connor, and Peter M. Athanas. Scheduling and
partitioning ANSI-C programs onto multi-FPGA CCM architectures. In Ken-

neth L. Pocek and Je�rey Arnold, editors, IEEE Symposium on FPGAs for Cus-

tom Computing Machines, pages 178{187, Los Alamitos, CA, April 1996. IEEE

Computer Society Press.

10. Markus Weinhardt. Portable pipeline synthesis for FCCMs. In Reiner W. Harten-

stein and Manfred Glesner, editors, Field-Programmable Logic: Smart Applications,

New Paradigms and Compilers, pages 1{13, 1996. Proceedings of the 6th Interna-
tional Workshop on Field-Programmable Logic and Applications, FPL 96. Lecture

Notes in Computer Science 1142.

11. Xilinx, Inc. The Programmable Logic Data Book, 1996.
12. Xilinx, Inc. XC6200 Development System, 1997.

This article was processed using the LATEX macro package with LLNCS style

