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Abstract. Recently, several research and commercial systems based

on recon�gurable logic have been implemented. These machines have

demonstrated supercomputer levels of performance for a number of al-
gorithms. While these demonstrations have been impressive, it is not

clear that architectures based on recon�gurable logic will necessarily be

suitable for algorithms commonly executed on supercomputers. This pa-
per discusses the implementation of Livermore Fortran Kernels for a

supercomputer class machine based on recon�gurable logic.

1 Introduction

Recently, a large number of systems based on recon�gurable logic have been
designed and built [5]. Some of the largest of these machines have demonstrated
supercomputer levels of performance on selected algorithms. As larger recon�g-
urable machines become available, it is widely believed that they will be used
to implement algorithms typically found on existing supercomputers. It is not
clear, however, that these architectures are well suited to these tasks. Most of
the algorithms implemented to date are more typically found implemented in
custom hardware rather than on large general purpose machines.

This study examines the feasibility of general purpose supercomputing using

recon�gurable logic. Algorithms selected for the Livermore FORTRAN Kernels

(LFK) [9] [2] are used to examine the performance of a recon�gurable logic based
supercomputer. The LFK are chosen for several reasons.

First, the LFK suite is a widely used tool to measure CPU performance. This
allows comparison to a wide range of existing architectures. Second, the LFK
are composed of a number of tests which include a wide range of computational
structures. While some of these structures are used to measure the peak per-
formance of a system, others are constructed speci�cally to limit performance.
This permits an examination of architectural weaknesses as well as strengths.
Finally, the LFK are relatively compact and self contained. This allows their
simulation on models of proposed hardware. Performance information gained
from such simulations is valuable in guiding the design.



2 The Livermore Fortran Kernels

The LFK are a collection of 24 relatively small fragments of code. Each of these
code fragments contains a CPU intensive loop, giving the test suite its informal
name, \the Livermore Loops". The LFK were developed in 1970 to test the code
generated by compilers. Over time, these codes have become a benchmarking
tool for new supercomputer systems.
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Fig. 1. Performance sorted my MFLOPs for a CRAY X-MP.

As the LFK have evolved into a benchmarking tool, new loops have been
added to exercise speci�c features of both compilers and hardware. The number
of loops has grown from the initial 12 to the current 24.

The kernels in this study were converted by hand from the original FOR-
TRAN to a data parallel version of the C language. Simulations of circuits ex-
tracted from this data parallel code are compared against a standard C version
of the LFK [3].

Finally, it should be noted that the LFK are speci�ed for high accuracy
oating point arithmetic. While some work is being done on the implementation
of oating point arithmetic in recon�gurable logic [1], it is understood that using
the technology available today, a very large RPU would be required to implement
these functions. While numeric accuracy is important, it is the computational
structures in the LFK which are of primary interest. It is these structures, not
numeric accuracy, which has the greated impact of performance.

Figure 1 plots the performance of the 24 Livermore Fortran Kernels run on
a CRAY X-MP using the CFT77 3.0 compiler [10]. The numbers are listed in
MFLOPs and are sorted by performance. From this sorted graph of the LFK,



four distinct performance ranges can be identi�ed. These are: fully vectorizable,
partially vectorizable, unvectorizable and unstructured.

In general, kernels in each of these regions present di�erent computational
challenges. These will be discussed in more detail as the kernels are implemented.
For brevity, only representative kernels from each region are discussed. Kernels
were chosen primarily for their simplicity in illustrating the particular compu-
tational structures.

The recon�gurable hardware platform used for execution of these kernels
is assumed to consist of a relatively large Recon�gurable Processing Unit, or
RPU, dedicated memory tightly coupled to the RPU, and a host machine. The
recon�gurable portion of the system is assumed to operate at 50 MHz. The highly
pipelined circuits combined with the vector data accesses make this feasible.

3 Fully Vectorizable Loops

Kernels in the fully vectorizable category typically perform the highest on vector
supercomputers. These kernels are characterized by being easily vectorized as
well as providing enough work to occupy multiple functional units.

3.1 Loop 1: Hydrodynamic Code

Loop 1 is a fragment from a hydrodynamic simulation. The original FORTRAN
code for this loop is shown in Fig. 2. This loop is easily vectorizable and can
make concurrent use of several functional units.

Do 1 k = 1,n

1 X(k) = Q + (Y(k) * ((R * Z(k+10)) + (T * Z(k+11))))

Fig. 2. The original FORTRAN code for Loop 1.

The translation of this algorithm to data parallel form is shown in Figure 3.
Because of the structure and simplicity of this loop, the similarities between the
FORTRAN code, the algorithm and the data parallel code are clear.

Z10 = delta(Z, 10);

Z11 = delta(Z10, 1);

X = q + (Y * ((r * Z10) + (t * Z11)));

Fig. 3. The data parallel code for Loop 1.



One feature of this implementation which may require further explanation is
the use of the delta() function. This function is used to provide vectors whose
indices are o�set some small number of units. The delta is literally a delay. By
providing a delayed version of the vector, data can be made available as it is
required without having to re-access the memory system. The translation from
an indexed style of coding is faily simple.

Figure 4 shows the RPU circuit extracted from the dataow graph of this
code. This is the circuit makes use of 5 functional units, and has a latency of 5
functional units.
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Fig. 4. The con�gured circuit for loop 1.

Estimating performance of this circuit is fairly simple. Assuming su�cient
memory bandwidth and a clock speed of 50 MHz, the processor will produce one
result per clock cycle, neglecting latency. Since all functional units are kept busy
on each cycle, approximately 250 million operations per second are performed. If
the functional units all perform oating point operations, this corresponds to 250
MFLOPs. Even at this modest clock speed, this exceeds the rate of computation
of the CRAY X-MP.

3.2 Loop 3 - Inner Product

The second fully vectorizable loop is an inner product calculation. This is a
multiply-accumulate function found in many applications, including the matrix
arithmetic. Because of the widespread use of this type of calculation, most su-
percomputers are especially e�cient at its execution. The data parallel version
of the code is simply the add-scan() of a product, as shown in Figure 5.

The circuit extracted from this data parallel code is fairly simple, containing
a multiplier and an add-scan functional unit. The memory bandwidth required
is also fairly modest. Two vector inputs and a vector output are required.



Q = add-scan(Z * X);

Fig. 5. The data parallel code for Loop 3.

At a rate of 50 MHz, neglecting overhead, this circuit performs 100 million
operation per second. This is somewhat less than the CRAY X-MP. The very
small number of functional units indicates very little exploitable parallelism.

4 Partially Vectorizable Loops

The next group of kernels perform at a level somewhat below that of the fully
vectorizable kernels. Here, these loops are referred to as partially vectorizable

loops. In these kernels, the ability to fully use the vector units is reduced. While
these loops do not have the performance levels of the fully vectorizable loops,
their levels of performance are still substantial, but only a fraction of the peak
performance achieved by the fully vectorizable loops.

4.1 Loop 12 - First Di�erence

Loop 12 is a �rst di�erence calculation. Despite its relatively low performance,
this loop is fairly simple and is easily translated to data parallel code.

Figure 6 gives the translated data parallel code for the �rst di�erence calcu-
lation. The use of the delta() function provides the o�set version of the vector
Y , saving input bandwidth.

Y1 = delta(Y, 1);

X = Y - Y1;

Fig. 6. The data parallel code for Loop 12.

The circuit extracted from this code contains only a delta unit and a sub-
tractor. Because this implementation requires only a single functional unit, the
calculation proceeds at a rate of 50 million operation per second. This is sim-
ilar to the rate achieved by the CRAY X-MP. The performance of this loop is
reduced because of a lack of work to be performed on the data.

4.2 Loop 22 - Planckian Distribution

Loop 22 is from a Planckian distribution program. Here, the computation rate on
traditional vector processors is slowed by conditional execution. Figure 7 gives
the data parallel code for this loop.



if (U < (V * 20.0))

Y = (U / V);

else

Y = 20.0;

W = X / (exp(Y) - 1.0);

Fig. 7. The data parallel code for Loop 22.

In this implementation, the conditional statement provides two alternate val-
ues for the elements in Y , depending on the result of the conditional statement.
This permits a parallel computation of the two values, with the proper result
being selected.

While this is a more complex loop, only 5 functional units, not including the
comparison or the the multiplexer, are used. This assumes that the exp() function
is counted as a single functional unit. Depending on the implementation, this
operator may be composed of other simpler arithmetic and logical operations.

Assuming a clock speed of 50 MHz, this implementation achieves approxi-
mately 250 million operations per second. This is almost four times the rate of
the CRAY X-MP reference machine. This increase is attributed to the ability to
e�ciently perform conditional operations.

5 Unvectorizable Loops

The kernels in this performance range are typically unvectorizable and are unable
to make extensive use of vector hardware. Since they are not able to make use of
the vector processing facilities that helped enhance performance in the previous
loops, their performance is not only considerably lower, but also more uniform.
These algorithms are typically forced to used the non-vector portion of the CPU,
thus testing the performance of this portion of the architecture.

Most of these loops are unvectorizable because of data dependencies intro-

duced by recurrence equations. While completely unvectorizable using tradi-
tional �xed instruction architectures, the use of structures such as parallel pre�x
scan operators open up new possibilities for these functions.

5.1 Loop 5 - Tridiagonal Elimination

Loop 5 is a fragment of code use in tridiagonal elimination. The original FOR-
TRAN code contains a data dependency in X that prohibits vectorization. This
kernel typi�es a class of equations known as �rst order linear recurrence equa-
tions. Several approaches to parallelizing these equations have been proposed
over the years [8] [7] [4].

The approach demonstrated here makes use of the fact that the computed
values are actually independent if previously computed values are substituted



into the subsequent equations. X(5), for instance, can be written as in Equa-
tion 1.

X5 = Z5Y5 � Z5Z4Y4 + Z5Z4Z3Y3 �

Z5Z4Z3Z2Y2 + Z5Z4Z3Z2X1 (1)

This approach, while producing independent calculations, raises the compu-
tational complexity from O(n) to O(n3). It is, however, possible to represent
these equations using scan operators. While the actual construction of the scan
based version of this code is beyond the scope of this paper, the parallel form
of the equation contains easily discernible patterns amenable to scan operators.
Figure 8 gives the data parallel code for this kernel.

X = mul-scan(-Z) * (add-scan((Z * Y) /

mul-scan(-Z)) - x0)

Fig. 8. The data parallel code for Loop 5.

From this data parallel code, a pipelined circuit can be extracted. The ability
to use non-standard operators such as scans has permitted a pipelined version
of this kernel, greatly improving performance.

The circuit uses 7 functional units and two vector inputs and a single vector
output. At 50 MHz, this circuit calculates 350 million operations per second.
While the re-casting of the algorithm has added these extra functional units,
thereby boosting the number of operations, the throughput of this circuit is still
superior to other implementations, including those on supercomputers. While
performance is increased, the new approach to this algorithm introduces some
numerical stability problems not found in the original version.

5.2 Loop 11 - First Sum

Loop 11 is a �rst sum calculation. As in loop 5, a data dependency in the form
of a recurrence is responsible for the low performance.

Unlike the recurrence equation in loop 5, the �rst sum in this kernel is very
simple. It is essentially the de�nition of the add-scan() operator. The circuit
extracted from this code is again, very simple. A single add-scan operator is
used. A single vector input Y is used to produce a single vector output X.

While providing a vector solution for this algorithm, the �rst sum su�ers a
similar performance limitation to loop 12, the �rst di�erence kernel. Since only
a single functional unit is used, the number of operations at 50 MHz is only
50 million per second. Even this low rate of calculation, however, still exceeds
supercomputer levels of performance.



6 Unstructured Loops

These kernels are the lowest in performance on the CRAY X-MP reference ma-
chine. As with the unvectorizable loops, they are unable to take advantage of
the special vector hardware. Additionally, these kernels contain structures that
further reduce performance, even for the non-vector portion of the processor.

For lack of a better term, these loops will be referred to as unstructured. They
are characterized primarily by the presence of unstructured control, usually in
the form of goto statements, as well as complicated array indexing schemes.

Some of these loops actually exhibit a large amount of parallelism. It is often
the way in which the algorithm is expressed, rather than any limitation in the
underling algorithm, that reduces performance. For these reasons, some of these
loops are better test of FORTRAN compiler optimizers than the underlying
processor architecture.

6.1 Loop 24 - First Minimum

Loop 24 is selected as a representative of the unstructured loops because it has
a deceptively simple implementation, while having the lowest performance of all
24 loops on a CRAY X-MP. The original FORTRAN code for this kernel is given
in Figure 9.

max24 = 1

Do 24 k = 2,n

24 if (X(k) .lt. X(max24)) max24 = k

Fig. 9. The original FORTRAN code for Loop 24.

An attempt to translate this algorithm into data parallel code reveals some of
its limitations. First, this code uses a conditional operator, which interferes with
vectorization. Next, it performs an operation involving only two scalar quantities.
Finally, X is indexed by a scalar quantity which changes unpredictably. All of
these factors combine to dramatically reduce the performance of this kernel.

The goal of this loop. however, is to �nd the location of the minimum value
in the vector X. Constructing a data parallel solution will require more than a
simple translation from the original FORTRAN speci�cation of the algorithm.

Figure 10 gives the data parallel code for this algorithm. In this implemen-
tation, the min-scan() operator is used to determine the minimum value. The
conditional operator is then used to select the index for the minimum value.
Since a looping index is not directly available, the add-scan(1) statement is used
to generate these index values.



Min = min-scan(X);

Min1 = delta(Min, 1);

Diff = Min1 < Min;

Index = add-scan(1);

M = max-scan(Index * Diff);

Fig. 10. The data parallel code for Loop 24.

While a substantial modi�cation of the original algorithm, this version is
fully pipelinable and executes at approximately 200 million operations per sec-
ond. While much of this �gure is due to the additional functional units, this
implementation still produces the desired result in approximatelyN clock cycles
for a vector of length N .

A �nal note on unstructured algorithms. Many may not be suitable for re-
con�gurable machines. Unstructured access to vector data is a problem. Vector
indexing of the form X[Y [n]] is particularly di�cult. Without special hardware
support in the memory system, this type of calculation will almost certainly
involve the host.

7 Conclusions

The table in Figure 11 gives an analysis of the performance of the seven kernels
implemented. Perhaps not surprisingly, the algorithms which fared well on super-
computers also fared well on recon�gurable logic based machines. What is more
surprising is the high levels of performance achieved by some of the loops which
performed poorly on the CRAY X-MP, the supercomputer reference machine.

Loop Vector Vector Functional Estimated CRAY X-MP
Number Inputs Outputs Latency Units MFLOPs MFLOPs

1 2 1 5 5 250 160
3 2 1 2 2 100 138
12 1 1 2 1 50 63
22 3 1 5 5 250 68
5 2 1 6 7 450 14
11 1 1 1 1 50 14
24 1 1 5 5 200 3

Fig. 11. The LFK performance parameters.



While many of the algorithms are easily implementable and exhibit very high
performance, some structures are still problematic. First, simple recurrences can
be implemented e�ciently using scan circuits. Currently, however, no simple
algorithm exists for translating more complex recurrences into these circuits.
Secondly, unstructured algorithms, particularly those which make use of indirect
array indexing, are not well suited to recon�gurable logic. Using the host to
vectorize these types of array accesses before they are submitted to the RLU
may be a solution for some algorithms.

This study was performed primarily to examine the feasibility of general
purpose supercomputing using recon�gurable logic. While not a solution to all
problems, the results for a large class of popular computational structures is
promising. Furthermore, it should be noted that the algorithms in the LFK are
taken from real applications, written for traditional architectures. It is possible
that new classes of algorithms which exploit the unique features of recon�gurable
logic will provide even higher levels of performance for a larger class of problems.
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