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Abstract

Existing FPGA-based recon�gurable machines rely primarily on hardware descrip-

tions to implement algorithms. One proposed alternative is to specify algorithms using

a vector-based data-parallel programming methodology. This methodology permits

high performance, pipelined circuits to be extracted directly from high-level language

descriptions. In this paper, a program and corresponding circuit to generate the Man-

delbrot set are discussed. Issues concerning functional decomposition and conditional

statements and their corresponding circuits are also explored.

1 Introduction

Several high-performance FPGA-based recon�gurable machines have recently been designed

and implemented [1] [3], [4], [8] [10]. These machines are currently programmed at the hard-
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ware level. While this approach permits the most 
exibility and the highest performance,

it requires programmers to be skilled hardware designers.

One proposed approach to programming recon�gurable machines at a higher level is

to begin with descriptions of algorithms using a vector-based data-parallel methodology

[5]. These descriptions may be translated directly into high performance pipelined circuits.

These circuits may then be implemented directly on the recon�gurable machine.

It is expected that computationally intensive algorithms such as those currently executed

on supercomputers and large parallel machines will be best suited to this approach. An

example application, the generation of a popular type of fractal, the Mandelbrot set, is

examined here. This application introduces the use of functional decomposition and a

method of performing conditional calculations.

2 The Mandelbrot Set

The algorithm to calculate the Mandelbrot set is a popular computationally intensive al-

gorithm. The ubiquitousness of this algorithm has made it something of a benchmark for

high performance systems. Much of the popularity of this algorithm can probably be at-

tributed to the interesting bitmaps it generates. But there are two particular features of the

algorithm that make it computationally interesting.

First, it is a compute bound algorithm. No input or output is performed during the bulk

of the calculation. Second, the calculation parallelizes easily. This has led to its extensive

use as a demonstration vehicle for parallel machines.

The formula for the algorithm is very simple. A single quantity is recursively calculated

using the formula:

z = z2 + c

In this equation, z and c are both complex numbers. Initially, z is set to zero, and c is set

to some initial condition. The value of z is then iteratively calculated. Since this calculation
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is non-linear, the value of z can be expected to either remain within �xed bounds, or diverge

toward in�nity.

When calculating the Mandelbrot set, the quantity of interest is not the actual value of

z, but rather the number of iterations taken before the equation diverges. It is known that

when the magnitude of either the real or the imaginary portion of z becomes greater than

2, the values will diverge toward in�nity. The number of iterations taken to reach this point

of divergence is the quantity of interest.

In most implementations of the Mandelbrot set algorithm, several initial conditions are

calculated together. These points are usually equally spaced within the complex plane. The

iterations are then plotted graphically, with individual display pixels corresponding to the

points in the complex plane. Since each calculation is independent, there is a large amount

of parallelism exploitable in the algorithm.

3 Functional Decomposition

The calculation of the Mandelbrot set makes extensive use of complex arithmetic. In the

complex number system, values are represented as pairs of numbers describing the real and

imaginary components.

In the vector model of computation, all quantities are linear arrays of contiguous values.

To perform calculations using complex values, a complex vector data type must be speci�ed.

This data type will consist of two standard vector data types grouped into a C-like structure.

The two complex operations used in the calculation, addition and multiplication, must

also be speci�ed in terms of existing arithmetic or logical operations. Complex addition is

fairly simple. The real and imaginary parts of the vector are added, respectively. The data

parallel code for this function is shown in Figure 1. This code uses C++ style operator

overloading.

A digital circuit can be extracted from this function. This circuit is derived from the

data
ow graph of the code. Since there are two addition operations, and both are indepen-
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/* A Complex vector */

struct Complex {

Vector Re;

Vector Im;

};

/* Complex addition */

Complex "+"(Complex a, Complex b) {

Complex sum;

sum.re = a.re + b.re;

sum.im = a.im + b.im;

return (sum);

}; /* end "+" */

Figure 1: The code for complex addition.

dent, the circuit is fairly simple. Figure 2 shows the extracted circuit from this function.

Using a standard addition macrocell, a new complex addition macrocell is created. This

new cell can be used in conjunction with existing macrocells. It may even be used in the

construction of other, more complicated macrocells.

++ +

a.re a.im b.re b.im
a b

sumsum.re sum.im

Figure 2: The complex addition circuit.

In a similar fashion, data parallel code can be written to multiply two complex vectors.

Note that the operation required is actually a square of the value of z. Rather than im-

plement the special case of a squarer, the more general multiplication unit is implemented.

The code used to implement complex multiplication is shown in Figure 3.

As with the addition operation, the data
ow graph of the code may be constructed
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/* Complex multiplication */

Complex "*"(Complex a, Complex b) {

Complex prod;

prod.re = (a.re * b.re) - (a.im * b.im);

prod.im = (a.im * b.re) + (a.re * b.im);

return (prod);

}; /* end "*" */

Figure 3: Code for complex multiplication.

and used to produce a digital circuit implementation of the operation. In this case, four

multiplications, an addition and a subtraction are performed. The circuit in Figure 4 is

extracted from the data
ow graph of the code.

*

*

−

*

+

* *

a.re a.im b.re b.im

prod.re prod.im

prod

a b

Figure 4: The complex multiplication circuit.

The complex addition and multiplication functions demonstrate that problems can be

decomposed into smaller, more manageable units. This technique has been used successfully

by both hardware and software designers to manage complexity. These two methods are

analogous, as demonstrated by this approach. The reusable software modules are translated

into corresponding reusable hardware modules.

4 The Initial Condition Vector

With the necessary support for complex arithmetic in place, a data parallel description of

the algorithm can be written. The �rst issue concerns the values in the initial condition
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vector, c. This vector will contain the real and imaginary values representing points in the

complex plane. The simplest approach to supplying these values would be to consider this

vector a static constant that is initialized before calculation begins.

While a simple alternative, these points would still have to be calculated, perhaps o�-line,

by some host machine. It would be desirable to calculate these values using the recon�g-

urable hardware.

The values to be generated are points in the complex plane. If the X-axis is considered

to represent the real values, and the Y-axis imaginary values, the problem is just one of

producing evenly spaced (X;Y ) points in this plane.

Since the values used are real and imaginary vectors, data parallel operations on each

value in the vector must be used. One approach to producing the desired vectors is:

1. Declare a vector of length (X SIZE � Y SIZE)

2. Generate non-negative integer points in the plane

3. Scale the values

4. O�set to the proper coordinates

The code which uses this approach to generate the c vector is shown in Figure 5. For

simplicity, each line of code in Figure 5 performs a single operation. It should be noted that

since only two quantities are being calculated, it is possible to merge the 12 lines of code in

the example into two somewhat more complex lines of code.

First, in generating the non-negative integer values, the parallel pre�x add-scan() op-

eration is employed. Along with a constant initialization and a constant subtraction, this

operator is used to produce vectors which range from 0 to (X SIZE � Y SIZE). The

modulus operator (%) is used to produce the real portion of the vector, breaking the vector

into Y SIZE segments with values running from 0 to X SIZE.

In a similar fashion, the integer division operator (=) is used to break the imaginary

vector into Y SIZE segments containing all 0s in the �rst segment, 1 in the next segment,
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/* Calculate real portion of vector */
c.re = 1; /* [1, 1, 1, 1, ...] */
c.re = add-scan(c.re); /* [1, 2, 3, 4, ...] */
c.re = c.re - 1; /* [0, 1, 2, 3, ...] */
c.re = c.re % X SIZE; /* [0, 1, 2, 3, ... 99, */

/* [0, 1, 2, 3, ... 99, */
/* ... */
/* [0, 1, 2, 3, ... 99] */

/* Calculate imaginary portion of vector */
c.im = 1; /* [1, 1, 1, 1, ...] */
c.im = add-scan(c.im); /* [1, 2, 3, 4, ...] */
c.im = c.im - 1; /* [0, 1, 2, 3, ...] */
c.im = c.im / Y SIZE; /* [0, 0, 0, 0, ... 0, */

/* [1, 1, 1, 1, ... 1, */
/* ... */
/* [99, 99, 99, ... 99] */

/* Scale real */
c.re = c.re * X SCALE; /* [0.00, 0.02, ... 1.98, */

/* ... */
/* [0.00, 0.02, ... 1.98] */

c.re = c.re + X START; /* [-1.00, -0.98, ... 0.98, */
/* ... */
/* [-1.00, -0.98, ... 0.98] */

/* Scale imaginary */
c.im = c.im * Y SCALE; /* [0.00, 0.00, ... 0.00, */

/* ... */
/* [1.98, 1.98, ... 1.98] */

c.im = c.im + Y START; /* [-1.00, -1.00, ... -1.00, */
/* ... */
/* [0.98, 0.98, ... 0.98] */

Figure 5: Code for the initial condition vector.

etc ...

The scaling and translation is accomplished using a constant multiplication and an ad-

dition. The technique used is the same for both real and imaginary portions of the c vector.

Employing the functional decomposition technique that was used by the complex arith-

metic circuits, a circuit for producing the complex vector c can also be constructed. Figure 6

shows a diagram of this circuit. Note that only constant values are used as circuit inputs.

These constants may be integrated directly into the circuit, rather than input as vectors.

Constant folding can be accomplished in one of two ways. First, standard arithmetic
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Figure 6: The initial condition circuit.

circuit macrocells such as addition and multiplicationmay be used, with the constant values

placed in a dedicated register at an input of the macrocell. The second alternative is to con-

struct custom optimized macrocells. These custom macrocells can be viewed as optimized

versions of the standard macrocell. For example, division of an integer by an even power of

two, can be implemented as a simple shift operation. In many cases, the size and speed of

these optimized circuits is a considerable improvement over the general case.

As with the complex arithmetic operators, this code may be packaged as a function and

used as a macrocell. Note that the c macrocell has no inputs but outputs a new complex

value with each clock cycle. This lack of inputs reduces the required bandwidth of the �nal

circuit.

5 Conditionals

The Mandelbrot set algorithm is not yet implementable using the existing programming

model. Currently, only arithmetic and logical operations are permitted. This calculation
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requires some conditional calculation. First, diverging values in the computation of z will

eventually produce arithmetic over
ow. Vector elements larger than some �xed threshold

should not participate in the calculation. Also, the incrementing of the pixel values is only

performed when the value of the z vector element is below this threshold. What is necessary

is programming language support for conditionals and some method for converting these

language structures into circuits.

Athanas describes a method for implementing the IF statement from the C language.

The statement is mapped onto multiplexer or MUX based circuits [1]. This approach was

used to produce combinational circuits. An extension of this method to the data-parallel

programmingmodel will now be demonstrated. This will permit conditional code statements

to be translated into pipelined circuits for vector computations.

In the conditional statement in Figure 7, vector x is assigned to some function f(x)

when the clause cond is true. In a traditional instruction set machine, this code represents

a control structure which would generate a comparison and a branch instruction. If cond is

false, the assignment statement will simply not be executed.

if (<cond>)

x = f(x);

Figure 7: A conditional statement.

Translating this code statement into a digital circuit, particularly a pipelined circuit,

presents some problems. First, the data
ow graph representation of the code must be

extended to account for the conditionals. In addition, some technique for converting these

graph structures to circuits must be speci�ed.

If a MUX-based solution is considered, it is possible to consider the MUX a macrocell,

much like the other arithmetic and logical macrocells. The MUX macrocell, however, takes

three, rather than two inputs. Two of these inputs will be data inputs corresponding to the

true and false cases. The third input will be a single bit for the select line.

Using this approach, two distinct alternatives must be supplied for each conditional
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clause. This approach introduced here will be referred to as the dual assignment rule.

For each value assigned in the if clause of a conditional statement, there must also be a

corresponding assignment in the else clause. These values are calculated in parallel and

selected appropriately.

In Figure 7, the lack of an else clause implies an identity assignment. The implied code

is shown if Figure 8.

if (<cond>)

x = f(x);

else

x = x;

Figure 8: The implied dual assignment.

This implied assignment supplies the MUX with its two necessary inputs. This permits

a valid data
ow graph to be constructed. A circuit for this code fragment is shown in

Figure 9.

f

condx

x

Figure 9: The conditional circuit.

Pipelining this circuit is fairly straightforward. Both the conditional operator and the

MUX can be implemented with registered outputs driven by the common system clock.

This permits both to be viewed as standard data-parallel vector operations at the software

level. The greater-than conditional operator, as illustrated in Figure 10 can be viewed as a

vector operation.
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a: [0, -1, 6, 8, 1, -6]

b: [4, 3, -2, 2, 9, -8]

a > b: [0, 0, 1, 1, 0, 1]

Figure 10: The vector conditional statement.

6 The Calculation

With the code and corresponding circuits for complex operators and conditional statements

available, the implementation of the algorithm can proceed. Figure 11 shows the code used

to implement the Mandelbrot set.

if (z < 4.0) {

z = (z * z) + c;

pixel = pixel + 1;

}

Figure 11: The code to calculate the Mandelbrot set.

As in the other examples, this data parallel code is used to produce a pipelined digital

circuit. Figure 12 shows the �nal circuit extracted from the data
ow graph of the code.

Note that the previously de�ned \c" and complex arithmetic operators are used in this

circuit.

The �nal circuit has very low bandwidth requirements. A complex vector z and a vector

containing corresponding pixel values is input to the circuit. The updated complex vector

z and pixel values are output. A total of three numeric values are input to the circuit

and three numeric values output per clock cycle. During this clock cycle, approximately 20

arithmetic operations are performed.

The simulated output of this circuit is reproduced in Figure 13. For monochrome re-

production, the image below was produced by thresholding an 8-bit bitmap. The familiar

outline of the Mandelbrot set is clearly visible.

The circuit, as implemented, produces successively better approximations to the actual

Mandelbrot set values with each pass. It is assumed that the routing of data through the
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Figure 12: The Mandelbrot circuit.

circuit is under direct control of the memory system, and indirectly, under control of the

host.

Recall that the c vector is generated based on constant initializations at the beginning of

the code. This constant is fed into an add-scan() operator. This add-scan() operator contains

a feedback loop and, hence, contains some state information from the previous pass. This

circuit should be reinitialized at the beginning of each pass. This may be accomplished using

a reset signal or via recon�guration. In this situation, partial recon�guration is particularly

helpful.

7 Circuit Complexity and Performance

The circuit extracted from the data parallel code uses 23 macrocells. It is assumed that

the complex number greater-than operator (>) uses three macrocells, two comparators and

a boolean AND. The table in Figure 14 gives list of these macrocells. Since a majority of

these macrocells take constant inputs, they are tabulated using two values. The �rst value

gives the number of standard macrocells used, the second, the number of macrocells with
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Figure 13: The Mandelbrot set.

constant inputs.

N2 N

� = % + � > MUX

4/2 0/1 0/1 3/5 1/2 0/2 2/0

4/4 6/9

Figure 14: The macrocell usage.

Macrocells with constant inputs, particularly larger macrocells such as multiplication

and division, can bene�t greatly from constant folding optimizations. For this reason, the

complexity of the circuit is calculated �rst as a lower bound, representing optimization of

these cells, as well as an upper bound, where only standard macrocells are used.

For multiplication and division, a complexity of N2 is assigned. Optimization is assumed

to reduce this complexity to N . All other macrocells are assigned a complexity of N . This

complexity measure corresponds roughly to the number of FPGA Con�gurable Logic Blocks

(CLBs) used to implement the function. Other circuit components, such as delay elements
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for pipeline balancing are neglected in this analysis.

From this table, we calculate the following minimum and maximum circuit complexity:

Maximum: 8N2 + 15N

Minimum: 4N2 + 19N

If the circuit is constructed using all 16-bit datapaths, approximately 1328 CLBs are

needed for the minimum estimate and 2288 CLBs for the maximum. While these estimates

are rough and depend on the particular FPGA devices used, the number of CLBs necessary

is achievable with a very small number of available parts.

As with all pipelined circuits constructed in this manner, one complex result is produced

per clock cycle, once the pipeline is �lled. In this circuit, the pipeline latency is 7 stages. If

the multiplier units are internally pipelined, the latency could increase to several times this

value. This is still small, however, compared to the length of the vectors processed.

Given the clock speed, it is simple to calculate the number of pixels processed. The

number of pixels processed per second is approximately equal to the clock speed of the

circuit. For instance, at 10 MHZ, approximately 10 million pixels are processed per second.

8 Conclusions

The calculation of the Mandelbrot set, a popular computationally intensive algorithm, has

been shown to be easily implementatble on a recon�gurable machine. Using a data-parallel

programmingmethodology, very high level code can be used to describe the algorithm. This

code can be translated into a high-performance pipelined circuit and programmed into an

FPGA-based machine using a reasonable number of CLBs.

The implementationof this algorithmhas introduced the use of functional decomposition.

This has long been used to manage the complexity of software and circuit design. Here, it

is used to manage the complexity of both the software and the circuits it produces.

Finally, a technique for performing conditional vector operations has been presented.

This technique performs two alternative calculations in parallel and selects the desired value
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using a multiplexer.
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