
A Cellular Multiplier for Programmable Logic

Steven A. Guccione

Mario J. Gonzalez

Computer Engineering Research Center

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX 78712

February 17, 1994

Abstract

Recently, several experimental systems based on programmable logic

have been designed and implemented. At the moment, these systems are

programmed using a hardware design methodology. If these systems are

to gain widespread acceptance, a more traditional software design envi-

ronment must be developed. One necessary component of this software

environment will be a library of standard macrocells corresponding to

commonly used arithmetic and logical operations. In this paper a mul-

tiplier designed speci�cally for programmable logic is developed. This

1



multiplier is cellular, highly pipelined and uses only of local interconnec-

tions.

1 Introduction

Recently, several general purpose recon�gurable coprocessors based on pro-

grammable logic have been designed and built [AS93] [GHK+90] [Kea89]. These

machines have demonstrated very high levels of performance using a very small

amount of hardware.

One drawback to existing recon�gurable systems is the lack of high level

software. Currently, most systems rely on a hardware design as their underlying

programmingmodel. Circuit design tools such as hardware design languages and

schematic capture must be used to specify the behavior of the coprocessor.

One proposed alternative to the circuit design approach is a high-level lan-

guage approach based on the data parallel programming methodology [GG93a].

Data parallel programs developed using this methodology may be translated di-

rectly into high-performance pipelined circuits. This technique has been demon-

strated on some popular computationally intensive algorithms [GG93a] [GG93b]

[GG94].

The implementation of these high-performance circuits depends on the ex-

istence of an underlying library of high-performance macrocell-style building

blocks. These macrocells should be of a very regular structure suitable for im-

plementation on a programmable logic device. They should also be pipelined

2



and rely only on interconnections between neighboring cells.

One of the largest, and perhaps most important functions used by such a

general-purpose system is multiplication. What is desired is a high-performance

multiplier that can be mapped e�ciently to an array of programmable logic cells.

2 Multiplication

Several popular and well-understood methods for multiplying two binary num-

bers exist. All are based on successive additions to produce a �nal product.

In the standard representation, all pairs aibj for 0 � i; j < n are produced

and added appropriately. The diagram for this general algorithm is shown in

Figure 1.

a3 a2 a1 a0

� b3 b2 b1 b0

a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3

P7 P6 P5 P4 P3 P2 P1 P0

Figure 1: Multiplication of two 4-bit numbers.

While several types of circuits are popularly used to perform multiplication,

3



the one which appears most nearly suited to a cellular implementation is the

array multiplier. Figure 2 shows a general diagram of an array multiplier.

P 6

a 3 b 3

FA FA HA

P 4P 5P 7

a 3 b 2

FA a 2 b 3 FA a 1 b 3 FA a 0 b 3

P 3

a 3 b 1

FA a 2 b 2 FA a 1 b 2 FA a 0 b 2

P 2

a 3 b 0

HA a 2 b 1

a 2 b 0

HA a 1 b 1

a 1 b 0

HA a 0 b 1

a 1 b 0

P 1 P 0

Figure 2: An array multiplier.

This multiplier is essentially a hardware implementation of the standard

multiplication algorithm in Figure 1. Standard half adder and full adder cells

are used to sum the N2 partial products aibj. This circuit is cellular, pipelinable

and, at �rst glance, appears to use only nearest neighbor interconnections.

Unfortunately, the diagram in Figure 2 ignores a crucial part of the circuit.

It is tacitly assumed that all of the necessary partial products aibj are available

to all of the appropriate cells. In reality, hardware is necessary to perform the

ANDing the bits aibj and interconnections must be used to route signals to

their appropriate locations. In the design of a cellular multiplier based on a

4



programmable logic array, the production of these partial products cannot be

ignored.

3 Partial Product Generation

In the multiplication algorithm shown in Figure 1 all N2 combinations of the

bits representing the input operands A and B are ANDed together. Perhaps

the most obvious method of producing these partial products is an array of N2

AND gates, as shown in Figure 3.

b 0

b 1

b 2

b 3

a 0 a 1 a 2 a 3

Figure 3: Generation of partial products.

This circuit is cellular and may be implemented using only local intercon-

nections. In this representation, however, the circuit is combinational. All N2

partial products are generated in parallel.

Another approach is to produce combinations of ai and bj systolically. By

5



moving the bits of one operand across the other in the manner of a convolution,

between 1 and N partial products are generated per cycle. Figure 4 shows the

�rst two cycles of this operation. This technique has been applied previously to

an iterative multiplication method [Swa73].

a
3

a
2

a
1

a
0

b
0

b
1

b
2

b
3

a
0

b
0

T
0

a
3

a
2

a
1

a
0

b
0

b
1

b
2

b
3

a
0

b
1

T
1

a
1

b
0

Figure 4: Systolic generation of partial products.

A systolic circuit for performing this operation consists of a downward move-

ment of one input operand and a diagonalmovement of the second input operand

across the �rst. At junctures, the partial products are generated by ANDing

the two values. All cell outputs are latched. Figure 5 shows the systolic cir-

cuit used to produce the partial products. Note the resemblance to the original

combinational circuit in Figure 3.

Note that the partial products produced across each row correspond to one

6



&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

a 0

a 1

a 2

a 3

a 3

a 2

b 0

b 1

b 2

b 3

a 1

a 0 b 0

b 1

b 2

b 3

a 2 b 0

a 1 b 1

a 0 b 2

Figure 5: A circuit to systolically produce partial products.

column of partial products from Figure 1. These partial products must be

summed, with the carries being propagated to the next column. Unfortunately,

adding the partial products in this manner presents a problem. As the A and B

operands proceed downward in the array, the sums must be performed horizon-

tally across the row. The downward propagation of data cannot continue until

all partial products across a row are summed. A more desirable situation would

be to have the partial products generated in columns rather than rows. This

would permit data to ow in a downward direction through the array without

7



having to wait for the horizontal propagation of the sums.

Fortunately, there is a simple transformation that permits the partial prod-

ucts to be produced in the desired columns. Figure 6 shows the systolic circuit.

&

&

&

&

&

&&

&

&

&

&

&

&

&

&

&

a 3

a 2

a 1

a 0

b 0

b 1

b 2

b 3 a 2 b 0

a 1 b 1

a 0 b 2

Figure 6: The transformed systolic circuit.

Another desirable e�ect of this transformation is the re-ordering of the bits

of the input operands. In the original systolic circuit, the A value was input

with its bits ordered from most to least signi�cant, while the B value was input

with its bits in the opposite order. The transformed circuit takes both A and

B values in most to least signi�cant bit order.

8



4 Constructing the Multiplier

Using the hexagonal array in Figure 6, partial products are generated such that

their columns can be added to produce the �nal product. From here it is a

simple matter augment this array to produce a full multiplier.

Figure 7 shows this augmented circuit. The cell at the top of each column

takes ai and bj as inputs and produces a partial product. This partial product

is passed to the next cell in the column, while the inputs are passed unchanged

along the diagonals.

As with the cells at the top of the columns, the other cells take inputs ai and

bj and produce a partial product aibj . Again, the inputs are passed unchanged

along the diagonals. In these cells, however, adder logic is used to produce the

sums of these partial products.

Figure 8 shows the logic implementation of the three types of cells used in

the multiplier array. When a single sum input is available, a half adder circuit is

used to produce a sum and carry output. The carry output is passed diagonally

downward in parallel with the bj output to the next column. When two sum

inputs are available, a full adder circuit is used. As with the half adder the sum

output is passed downward and the carry is sent downward to the next column.

It should be pointed out that the circuits in Figure 8 are logical representa-

tions. In the most general case, a programmable array would implement these

cells as 4-input, 4-output look-up tables. A less general, but simpler cell could

be based on the ANDing full adder. Setting the Sin and Cin inputs to zero

9



a 3

a 2

a 1

a 0

b 0

b 1

b 2

b 3

&

&&

&

&

&HA

&FA

&

&HA &

&HA&FA&FA

&FA&FA

&FA

P0

P1

P2

P3

Figure 7: The multiplier (least signi�cant bits).

would produce the functionality of the ANDing (&) cell, while setting only the

Cin input to zero would produce the functionality of the ANDing half adder

(&HA) cell.

Although all product terms have been produced and used in a calculation,

there is still some work to be done. Only the lower N bits of the product P have

been produced. The remaining sum and carry outputs must be manipulated

further to produce the N high-order bits of the product. This �nal portion of

the calculation counts for only a small portion of the hardware, but can represent

10



&

ain

aouts out

bin

bout

&HA

HA

ain

aout
c out s out

s in bin

bout

&FA

FA

ain

aout
c out s out

s in bin

bout

c in

Figure 8: The multiplier cells.

up to half of the circuit delay. This is because of the data dependencies necessary

to produce these outputs.

Many traditional high-performance multipliers opt to use a special fast adder

to produce these �nal product bits. While this is an option, the approach here

will use standard adders in the established cellular framework.

Figure 9 shows the multiplier with the \tail" of adder cells cascading from the

lower left corner of the array. The cells connecting this tail with the rectangular

portion of the array are used exclusively for routing. These routing cells also

serve to provide appropriate delays to the signals in this portion of the array.

This �nal portion of the multiplier uses one standard half adder and (N �2)

11



a 3

a 2

a 1

a 0

b 0

b 1

b 2

b 3

&

&&

&

&

&HA

&FA

&

&HA &

&HA&FA&FA

&FA&FA

&FA

P0

P1

P2

P5

HA

FA
P4

P3

FA

P6P7

Figure 9: The multiplier (bits 0{2N ).

standard full adders, for an increased pipeline depth of (N � 1). There are also

approximately N2=4 cells used for routing.

5 Synchronization

So far, the issue of synchronization has been ignored. Simple synchronous oper-

ation was possible for the earlier systolic ANDing circuit. When the downward

propagation of sums is included, however, a more complicated scheme becomes

12



necessary.

In the �nal multiplier circuit, cells have four inputs from the previous two

rows of the array. The combination of these signals from rows (N � 1) and

(N � 2) are the source of the timing di�culties. In this arrangement, the

downward sums propagate at a rate of approximately twice that of the other

signals.

Figure 10: Synchronization by delay insertion.

One solution, as shown in Figure 10, is the addition of a delay stage between

successive downward cells. This restores synchronous operation by insuring

that all signals into a cell at row N arrive from cells in row (N � 1). While this

permits a simple single clock to drive all cells in the array, the number of cells in

the array is doubled. This may be acceptable, however, since these delay cells

will be much simpler that the other cells in the array.

A second solution, as shown in Figure 11, involves switching to a two-phased

clocking strategy. Here, cells on \even" rows are clocked, making data available

to rows (N +1) on the diagonals and (N + 2) downward. Next, \odd" rows are

13



0
P

0
P

1
P

Figure 11: Synchronization via two-phased clocking.

clocked, using previously latched data from rows (N � 1) on the diagonals and

(N + 2) upwards. This keeps the downward ow of data synchronized with the

diagonals.

For circuits using latched outputs, this scheme may be implemented using a

two-phase non-overlapping clock. In the �rst phase, �1, is used to clock \even"

rows, and the second phase, �2, is used to clock the remaining \odd" rows.

For outputs using edge-triggered devices, devices which latch on the rising

edge may be used for \even" rows. Devices which latch on the falling edge may

be used for the \odd" rows. A similar e�ect can be achieved by inverting the

clock signal on alternate rows.

While the edge-triggered solution uses a simpler clocking strategy, the edge-

triggered ip-ops used to construct the pipeline are somewhat more complex

than the latches necessary for the two-phased clocking strategy.

14



6 Performance Characteristics

Both of these synchronization strategies inuence the way that performance

characteristics are measured. In the two phased scheme, data moves through

the array at two rows per clock cycle. While an array may have a pipeline

depth of N , the pipeline latency will be only N=2 clock cycles. It should be

noted, however, that the frequency of the one-phased clock will be approximately

twice that of the two-phased clock. Both clocking strategies provide the same

throughput.

The depth of the pipeline is easily calculated. The main array has a depth

of (N +(N �1)). The additional sums in the \tail" increases the pipeline depth

by an additional (N � 1). This results in a total pipeline depth of 3(N � 1)+ 1.

The array may be extended to a rectangle, with the extra cells being used

as delay elements. These delay elements provide the appropriate skew to the

inputs and output. Operands can be written and products read out in parallel

in a single cycle.

The total size of the rectangular array can be easily calculated. Given an

array depth of approximately 3(N � 1), and a width of 2N + 1, the size of the

array is given by 3N2
� 9N + 4, or less than 3N2. Note that this value is the

product of the height and the width, divided by two. The division by two is

necessary because of the hexagonal array. There are (2N +1) cells in every two

rows, not each row.

Figure 12 shows the cell usage of the multiplier. Note that approximately

15



Delay

Logic

Routing

P

A B

Figure 12: The multiplier cell usage.

half of the cells are used as delays to de-skew the data. Approximately N2 cells

are used for the actual multiplier array. The remaining cells are used strictly to

route data.

7 Conclusions

Computation using programmable logic arrays promises to have the exibility

of a software programmable system with the performance of a custom hardware

solution. To fully realize the potential of these systems, powerful high-level

functions must be constructed. In this paper, a circuit for one of the more

important computational functions, multiplication, has been developed. This

multiplier is based on a hexagonal array of programmable cells with four inputs

and four outputs. Only local nearest neighbor interconnections are used. This

results in an regularly structured, high-speed, pipelined multiplier circuit.

16



Perhaps more signi�cantly, the use of a hexagonal array with local intercon-

nections has been shown to be a suitable architecture for this type of calculation.

This is in contrast to the rectangular arrays with dedicated routing that are cur-

rently popular.

References

[AS93] Peter M. Athanas and Harvey F. Silverman. Processor recon�g-

uration through instruction-set metamorphosis. IEEE Computer,

26(3):11{18, March 1993.

[GG93a] Steven A. Guccione and Mario J. Gonzalez. A data-parallel program-

ming model for recon�gurable architectures. In IEEE Workshop on

FPGAs for Custom Computing Machines, pages 79{87, 1993.

[GG93b] Steven A. Guccione and Mario J. Gonzalez. A neural network imple-

mentation using recon�gurable architectures. In Third International

Workshop on Field Programmable Logic and Applications, 1993.

[GG94] Steven A. Guccione and Mario J. Gonzalez. Fractal generation on

a recon�gurable architecture (submitted for publication). In IEEE

Workshop on FPGAs for Custom Computing Machines, 1994.

[GHK+90] Maya Gokhale, William Holmes, Andrew Kosper, Dick Kunze, Dan

Lopresti, Sara Lucas, Ronald Minnich, and Peter Olsen. SPLASH:

17



A recon�gurable linear logic array. In International Conference on

Parallel Processing, pages I{526{I{532, 1990.

[Kea89] T. A. Kean. Con�gurable Logic: A Dynamically Programmable Cel-

lular Architecture and its VLSI Implementation. PhD thesis, Uni-

versity of Edinburgh, Department of Computer Science, January

1989.

[MT90] Gin-Kou Ma and Fred J. Taylor. Multiplier policies for digital signal

processing. IEEE ASSP Magazine, 7(1):6{20, January 1990.

[NOI93] Chetana Nagendra, Robert Michael Owens, and Mary Jane Irwin.

Digit systolic algorithms for �ne-grain architectures. In International

Conference on Application Speci�c Array Processors, pages 466{477,

1993.

[Swa73] Earl E. Swartzlander, Jr. The quasi-serial multiplier. IEEE Trans-

actions on Computers, C{22(4):317{321, April 1973.

[Swa90] Earl E. Swartzlander, Jr., editor. Computer Arithmetic, volume 1.

IEEE Computer Society Press, Los Alamitos, California, 1990.

18


