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Abstract

Several architectures based on Field Programmable Gate Arrays (FPGAs)

have recently been introduced. These machines have demonstrated a high

level of performance for a variety of problems. Despite this success, soft-

ware development on these systems is generally limited to hardware descrip-

tion languages. One programming model that has been proposed for use with

recon�gurable architectures is the vector based data parallel model. This pa-

per describes the implementation of a multi-layer feed-forward neural network

using a vector based data parallel approach. The algorithm is described using

a subset of the C programming language. This description is translated into

a circuit which may be programmed into the FPGA based processor.

INTRODUCTION

Recently, several FPGA-based machines have been designed and built. These machines

have demonstrated supercomputer-level performance for a variety of computationally

intensive problems. In spite of these impressive demonstrations, FPGA-based machines

have not found widespread use. One limitation of these machines is their programming

environment. For the most part, these machines have been programmed using hardware

design tools. While this approach permits the most 
exibility and highest performance,

it requires that the programmer be a skilled hardware designer.

Guccione and Gonzalez (1993) have proposed a more traditional programming model

for these machines based on the vector-based data-parallel model of computation. This

model takes algorithms described in a high-level C-like language and translates them into

high-performance digital circuits. In this paper, this technique is used to implement a

multilayer feed-forward neural network.



THE NEURAL NETWORK MODEL

The network model is shown in Figure 1. This model contains three layers of neurons.

These layers are referred to as the input layer, the hidden layer and the output layer.

Data 
ows from the input neurons, through interconnections to the hidden neurons,

then through interconnections to the output neurons. The path through the network is

feed-forward and layered.
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Figure 1 A three layer feed-forward network.

Each neuron broadcasts its output value to all neurons in the next layer. These

output values pass to the next layer of neurons via weighted connections. These weighted

connections amplify or attenuate the output values before they are input to the neurons

in the next layer. The weighted values are summed, processed by some limiting function,

then output to the next layer.

The values of the weights for the interconnections de�ne the behavior of the network.

Several automated techniques exist that allow networks to \learn" the values of these

weights. For a set of inputs A, a set of associated weights W and a limiting function

f(x) we can describe the behavior of a neuron with the following equation:

output = f

 X
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(1)

Despite this simple representation, calculating the output of this network is a com-

putationally intensive problem. Each weighted interconnection in the network requires

an addition and a multiplication operation. In a fully connected network with I inputs,

H hidden units and O outputs, the number of interconnections is (I�H)� (H�O). To

calculate the outputs of this network, (I �H2
�O) multiplications and additions must

be performed as well as (I +H +O) limiting functions f(x).

Figure 2 shows a direct digital hardware implementation of a neuron. For a neuron

with N inputs, N multipliers, N � 1 adders and the hardware to implement the limiting

function, f(x) are required. For networks containing a large number of neurons, this

direct hardware implementation quickly becomes impractical.
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Figure 2 A digital representation of a neuron.

A VECTOR REPRESENTATION

The neural network model contains a large amount of parallelism. From the model, it

is clear that all weighted inputs in a layer can be calculated concurrently. While this is

possible, the number of hardware multipliers necessary to perform this task make this

approach impractical for all but the smallest networks. This parallelism, however, may

also be expressed in vector form. From this vector representation an e�cient custom

circuit can be extracted.

A vector representation of the network is shown in Figure 3. This �gure shows a

small network used to implement the Exclusive-OR function. The values of the inputs,

outputs and weights are grouped into vectors.

The interconnection weights between the input and hidden layers are stored in the

variable w1. This variable is not a matrix, but rather a list of vectors. The number of

vectors in this list is equal to the number of hidden units. The length of the vectors in w1

is equal to the number of input neurons, plus one. The additional value in each vector is

for the neuron o�set. The o�set can be viewed as a weight conected to an input whose

value is always `1'.

Similarly, the weights between the hidden layer and the output layer are stored in the

variable w2. The number of vectors in the list is equal to the number of output neurons.

Since there is only a single output neuron in this network, there is only a single vector

in the w2 variable. The length of this vector is equal to the number of neurons in the

previous layer, plus one.

Three other vectors store the state of the network. The input vector, In, supplies

values to the input neurons. This vector has two elements, one for each input neuron,

and is padded with an additional vector element. This additional element is used in the

calculation of the neuron o�set. Since the o�set may be considered a weight which is

always connected to an input value of `1', this last element in the input vector is always

set to `1', and represents the o�set input. This extra vector element permits the o�set

to be treated in the same manner as the other weighted interconnections.

In a similar fashion, the hidden vector, h, holds the output of the neurons in the
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Figure 3 An Exclusive-OR network.

hidden layer. Like the input vector, this vector is also padded with an additional vector

element containing a value of `1'. Finally, the output vector, Out, holds the value of the

output neuron. This vector has a length equal to the number of output neurons.

Using this representation, a pairwise multiplication of the input vector In and each

of the two weight vectors in w1 performs all of the multiplications necessary for the

calculation of the �rst layer. The products in each of these vectors are then summed.

Finally, these sums are passed through the limiting function f(x). This produces the

outputs of the hidden layer neurons.

After the outputs of the hidden neurons have been calculated, a similar process is

used to calculate the outputs of the output neurons. The vector of values representing

the outputs of the hidden layer, h, is multiplied by the vectors in w2. These products are

summed and passed through the function f(x) to produce the �nal output vector.

The vector-based data-parallel code for this process is fairly simple. Figure 4 shows

the code used to compute the output of the hidden layer. For clarity, the initialization

of the weight and input vectors are not shown in this code.

The code in Figure 4 declares the input vector in and two vector lists t1 and w2.

The vector list w2 contains the weights used in the calculation. The variable t1 is used

to store the results. The code follows these declarations. In this case, the code may be

written in just one line.

The vector multiplication operation computes the weighted inputs to the hidden units.

Since w1 is a list of vectors and In is a vector, each of the vectors in w1 are multiplied by In.

The add scan() operation is used to sum the products. This function is a parallel pre�x

vector operation which sums the values in the vector. The add scan() operation, along

with other parallel pre�x operations, is used by the APL programming language. Parallel

pre�x operations have more recently been used by the *LISP data parallel programming



VectorList t1(2,3);

VectorList w2(2,3);

Vector in(3);

/* Calculate outputs of hidden neurons */

t1 = f(add_scan(w1 * in));

Figure 4 Code to calculate the output of the hidden layer.

language (Hillis 1985).

Once the products have been summed, the output limiting function f(x) is applied.

The result is stored in the temporary list of vectors t1. This data structure, like w1

contains two vectors of length three. The last elements in each of the two t1 vectors

contain the output values of the hidden neurons. These values are copied to the vector

h and used to calculate the values of the output neurons. The other elements in the t1

vectors are partial sums which are discarded.

The code for calculating the values of the output neurons is nearly identical to the

code used to calculate the outputs of the hidden neurons. If the second layer weight

vector list w2 is substituted for the �rst layer weight vector list w1 and the hidden layer

output vector h is substituted for the input vector in, the code is the same. Given the

regular structure of the network model, this similarity is not surprising.

THE SIGMOID FUNCTION

The function f(x) is used to limit the values of the neuron outputs. In this network, we

wish to limit the output to values between 0 and 1. McClelland and Rumelhart (1988)

use what they term the logistic function to perform this limiting. This function is given

by the equation:

f(x) =
1

1 + e�x
(2)

This equation was selected because it provides the necessary limiting of the outputs

while having some properties which are useful in the learning phase of the algorithm.

Unfortunately, this equation contains the transcendental function ex, which is somewhat

di�cult to calculate. Nordstr�om and Svensson (1992) list several functions which may

be used as an approximation to the function used by McClelland and Rumelhart. These

functions all have the same general characteristics. They are continuously increasing, ap-

proach 0 at �1 and 1 at +1, and have a continuous �rst derivative. The approximation

we will use is given by the function:



f(x) =
1

2
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This function is a simple polynomial which uses no transcendentals. The graph in

Figure 5 shows both the logistic function of McClelland and Rumelhart, given by f1(x)

and the approximation above, given by f2(x). Note that the curves provide a similar

limiting function. It is the general characteristics of the sigmoid, not the precise equation

which is important in this case.
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Figure 5 Sigmoid activation functions.

The C-like code for the function f(x) is shown in Figure 6. It is a straightforward

translation of the equation into software. Note, however, that the code is vector-oriented.

It takes as its input parameter a prede�ned data type Vector. The result is also a Vector.

This speci�cation indicates that this function performs a vector operation.

/* Sigmoid activation function */

Vector

f(Vector x) {

return ((1.0 / 2.0) * (x / (1 + abs(x)) + 1));

} /* end f() */

Figure 6 Code for the sigmoid activation function.

CIRCUIT EXTRACTION

From these code fragments, circuits may be extracted which will implement the neural



network algorithm. These circuits are extracted by creating the data
ow graph for the

code. This graph is then used to con�gured the hardware.

Since the �nal result of this code is a digital circuit, no mechanism for a traditional

software function call exists. To create the data
ow graph for the entire algorithm,

data
ow graphs for the function calls must be generated, then expanded as macros.
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Figure 7 The sigmoid activation function circuit.

Figure 7 shows the data
ow circuit for the function f(x). This circuit takes as its

input a value x and returns the output f(x). The functional units used by the circuit

are: two adders, a divider, an absolute value and a divide-by-two circuit. Some simple

optimizations have been performed on this circuit. A divide-by-two circuit, for instance,

has been used rather than a full divider. Once the circuit for this function has been

extracted, it may be used as a macrocell, much like the other macrocells in the circuit.

Once the circuit for the sigmoid activation f(x) has been extracted, the code for the

neuron output calculation may be converted into a circuit. In this case, the circuit is very

simple. As Figure 8 illustrates, the weight and the input vectors are multiplied, with the

results being accumulated by an add scan() macrocell. The result is then passed to the

sigmoid activation function for output limiting.

This circuit processes one set of vectors for each neuron in the network. Because

the add scan() macrocell performs an accumulate function, it will be necessary to clear

the output of this macrocell to zero before each vector operation begins. This can be

accomplished either with a reset signal, or by writing directly to the accumulate register

in the add scan() macrocell. It is expected that a reset signal will be more e�cient.
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Figure 8 The neural network circuit.

PERFORMANCE

This implementation of this neural network algorithm is well suited to an FPGA-based

machine. The uniform nature of the model permits a single circuit to be con�gured and

used to calculate the outputs of the network. Additionally, the bandwidth requirements

of the circuit is small. Two vectors are input and a single output vector is produced.

Only two input ports and one output port are required.

One unusual feature of this circuit is the calculation performed by the sigmoid func-

tion. While it is only necessary to take the sigmoid of the �nal sum of the weighted

inputs, this circuit takes the sigmoid of each of the partial sums. This would be ex-

tremely wasteful on an instruction set architecture, but in this case, there is no penalty

for performing these extra calculations. In fact, to do otherwise would require that more

than one circuit be used in the calculation. This would require an expensive recon�gu-

ration phase in the algorithm. The ability to perform all of the calculations in a single

pass with a single circuit is valuable, even though some computed values are never used.

The circuit produced by this code contains seven functional units. These units are

cascaded in an essentially linear pipeline. If some of the more complex functional units

such as the multiplier or divider are internally pipelined, the number of pipeline stages

could be increased. This superpipelining of the circuit will increase the maximum clock

speed of the circuit.

In estimating the performance of this circuit, two assumptions are made. First, it is

assumed that the bandwidth of the memory system is su�cient. Two values must be

supplied to the circuit input and one read from the output per clock cycle. Second, it is

assumed that the time taken to �ll the pipeline is negligible. For larger networks this is

a valid assumption. With these assumptions, one weighted interconnection calculation is



performed per clock cycle.

Since the metric typically used to measure performance of neural networks in con-

nections per second or CPS, it is a simple matter to estimate the performance of this

circuit. Since one connection is processed per cycle, the performance of the circuit in

CPS is equal to the circuit clock speed. The clock speed of this circuit will depend on

several factors, including the number of bits of accuracy used in the calculation, the type

of FPGA devices used and the implementation of the functions in the macrocell library.

As a comparison, the CRAY-2 can simulate this network at approximately 50 MCPS

(Nordstr�om and Svensson 1992). This would correspond to a clock speed of 50 MHz for

the FPGA-based design. Similarly, a 10-processor Warp system has been benchmarked

at 17 MCPS (Pomerleau et al 1988). This would correspond to an FPGA circuit clocked

at 17 MHz.

Nordstr�om and Svensson (1992) give benchmarks for other architectures, some of

which calculate over 1000 MCPS. These machines are not considered for comparison for

two reasons. First, many are parallel machines which use several orders of magnitude

more hardware than the FPGA approach. Second, many machines are special purpose

processors. These machines achieve high performance, but are in
exible.

CONCLUSIONS

Using an FPGA-based recon�gurable architecture and a vector-based data parallel pro-

gramming model, an e�cient neural network can be implemented. This implementa-

tion is based on a simple high-level language speci�cation which is translated into a

high-performance pipelined data
ow circuit. The performance of this implementation

compares favorably to implementations on other larger systems.
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