
Classi�cation and Performance of

Recon�gurable Architectures

Steven A. Guccione and Mario J. Gonzalez

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas at Austin

Austin, Texas 78712

Abstract. Recently, several systems have been designed which use re-

con�gurable logic to perform general purpose computation. While the

number of these systems being constructed continues to increase, their
relationship to conventional architectures is not clear. This paper pro-

poses a model which uni�es traditional instruction set architectures with

recon�gurable architectures. From this model, four major architectural
categories of recon�gurable machines are given. From this classi�cation,

issues of performance, programmability and scalability are addressed.

1 Introduction

A promising new approach to computing is currently being explored by re-

searchers. This approach uses recon�gurable logic devices to perform compu-

tations previously reserved for either traditional instruction set computers or

custom hardware.

Starting from a small handful of research projects in the late 1980s, over 40

systems based on recon�gurable logic have been constructed to date [11]. This

rate of growth appears to be increasing rapidly.

Machines based on this technology have taken several diverse architectural

approaches. It is the goal of this paper to �rst de�ne the general features of

these machines which make them unique and then to place these machines in a

framework which permits comparison to other architectures.

From this general framework, four architectural categories of recon�gurable

machines are de�ned and examined in closer detail. Finally, performance issues

concerning these machines are examined. Particular attention is paid to perfor-

mance limitations, rather than peak performance potential of these systems.

2 A Recon�gurable Model of Computing

With the commercial availability of relatively large recon�gurable logic devices

and the evolution of computer aided design tools, it has become feasible to build

fairly large and powerful systems based on recon�gurable logic. While it is clear

that large gains in performance can be achieved with this approach, little has

been reported on architectural issues concerning these systems. Unfortunately,



these machines appear on the surface to be su�ciently di�erent from existing

approaches to computation that direct comparison to traditional architectures

is di�cult and often confusing.

Performance
F

le
xi

bi
lit

y

Instruction
Set Arch.

Custom
Hardware

Reconfigurable
Architectures

Fig. 1. The traditional tradeo� of 
exibility and performance, and the potential of
recon�gurable architectures.

Figure 1 gives a general diagram of traditional approaches to computation

and their relation to recon�gurable architectures. Until the recent large scale

use of recon�gurable logic to perform calculation, there was a generally accepted

tradeo� between 
exibility and performance in computing systems. In general,

the more 
exible a machine was, the simpler the programming, but the lower the

performance. At one extreme, instruction set architectures can easily implement

a wide variety of algorithms, but at only moderate levels of performance. On

the other extreme is custom logic, which typically performs a single task very

e�ciently, but other tasks poorly or not at all. In between are various domain

speci�c architectures which trade performance for 
exibility.

The use of recon�gurable logic appears to o�er the 
exibility of instruction

set architectures with the potentially high performance of fully custom hard-

ware. This unique combination has led to di�culties in analyzing recon�gurable

machines. Performance comparisons to both custom hardware and to instruction

set machines can be found in the literature. While these comparisons are useful

for benchmarking, they provide little insight into how performance gains are

achieved and what levels of performance can be expected for other algorithms.

2.1 A Hardware Model

On selected algorithms, the performance of recon�gurable machines approaches

that of custom logic. This level of performance is typically two to three orders of

magnitude greater than that of implementations on instruction set architectures.

For this reason, it is tempting to make performance comparisons to a custom

hardware reference.

It should, however, be a foregone conclusion that any custom hardware imple-

mentation of an algorithm can also be similarly implemented on a suitably large



recon�gurable machine. The custom hardware implementation may be used to

determine the maximum achievable performance for a given algorithm, but this

is only useful in the cases where a comparable custom hardware solution exists.

Viewing recon�gurable systems as a form of custom logic does nothing to aid

in predicting performance for algorithms for which no custom hardware refer-

ence platform exists. Neither is it clear that comparing a highly programmable

machine to a �xed one is appropriate. Despite the similarities in performance,

it appears that comparing recon�gurable machines to �xed custom logic imple-

mentations of algorithms can only be useful in providing a rough expectation of

performance levels.

2.2 A Software Model

The ability to dynamically recon�gure hardware is often seen as the unique

feature of machines based on recon�gurable logic. However, for any hardware

to be used for more than a single purpose, some level of recon�gurability is

necessary.

A traditional instruction set processor may be viewed as a recon�gurable

processor. At the heart of the system, the arithmetic and logic unit, or ALU

can be viewed as a recon�gurable processing unit, or RPU. A dedicated path is

provided to the ALU for rapid recon�guration. Depending on the data sent to

this port, the ALU performs various di�erent logical operations on the inputs.

At a higher level, this recon�guration data is viewed as the operation codes

which partially de�ne the behavior of the system. Figure 2 shows and ALU with

instruction operation codes being used to recon�gure the ALU.

ALU*+&+ /

Reconfiguration
Data

Fig. 2. A recon�gurable model of computing.

From this perspective, the traditional ALU is actually a speci�c class of RPU.

The ALU is characterized by:

{ A dedicated port for recon�guration data

{ Few possible con�gurations

{ Rapid but frequent recon�guration



The number of bits used to con�gure a typical ALU is less than 10, with 8

being a representative number. This permits at most 2
8
unique con�gurations.

These con�gurations de�ne the operations available to the machine.

ALU recon�guration typically takes place on the order of once per clock

cycle. While the number of possible functions is limited, sequential combinations

of these operations permits a large number of useful functions to be performed.

While not particularly e�cient for any single task, this approach provides a

fairly constant level of performance for a wide variety of algorithms. The primary

drawback to this scheme is the bandwidth consumed by constant recon�guration.

Since this bandwidth is limited, operations must be performed in a more or

less serial manner. In spite of these limitations, the inherent 
exibility of this

approach has been extremely successful.

By contrast, RPUs based on recon�gurable logic devices make large scale use

of recon�guration. Instead of the roughly 8 bits used to recon�gure a traditional

ALU, thousands of bits are used to recon�gure an RPU. This very large number

of bits permits a very large number of possible functions. It is the writing of

these bits to the control port of the RPU which is is one of the major limiting

factors in the use of larger RPUs.

3 An Architectural Classi�cation

A model has been proposed that considers all general purpose machines to be

recon�gurable. What di�ers is the way in which recon�guration is managed. As

noted, the traditional instruction set architecture opts for frequent recon�gura-

tion with a small number of possible operations. Machines based on recon�g-

urable logic use a much more 
exible RPU, but at the cost of requiring a high

recon�guration overhead. Based on the way in which recon�guration is managed

and utilized to perform computation, these machine can be further classi�ed.

Two relatively independent architectural parameters can be used to subdivide

recon�gurable machines into four general categories. These parameters are:

{ RPU size

{ Dedicated local memory

The �rst parameter, the RPU size, is the amount of recon�gurable logic used

to implement the RPU. This value can be measured more or less by the number

of equivalent logic gates in the RPU. This will determine the complexity of the

functions which can be implemented by the RPU.

The second parameter is dedicated local memory. This is the memory directly

accessible to the RPU. The absence or presence of dedicated memory will e�ect

the system at several levels. Architecturally, dedicated memory implies that the

recon�gurable portion of the system may operate independently from the host.

From a software perspective, a programming model which supports an indepen-

dent processor and memory space is indicated. Finally, at the application level,

dedicated memory will e�ect the types of algorithms that can bene�t e�ectively

from the use of recon�gurable processing.



Based on these two parameters, recon�gurable machines can be divided into

four major categories. These are Application Speci�c Architectures (ASA), Re-

con�gurable Logic Coprocessors (RLC), Custom Instruction Set Architectures

(CISA) and Recon�gurable Supercomputers (RS). Figure 3 shows the four types

of recon�gurable architectures and their RPU sizes and presence or absence of

dedicated local memory.

No Local Local

Memory Memory

Small RPU CISA RLC

Large RPU ASA RS

Fig. 3. An architectural classi�cation of recon�gurable machines.

In this table, a small RPU is de�ned to be less than 10
5
equivalent gates

and a large RPU is assumed to be greater 10
6
equivalent gates. This boundary

is somewhat arbitrary and leaves a \grey area" for machines between 10
5
{10

6

equivalent gates. Machines which have RPUs whose gate count is somewhere in

this region may have features of two classes of machines.

3.1 Application Speci�c Architectures

The �rst class of recon�gurable systems are Application Speci�c Architectures

(ASA). These machines were some of the earliest to exploit the advantages of

recon�gurable logic. They have no dedicated memory and have relatively large

RPUs. These machines are primarily characterized by a very narrow area of

application.

One popular use of such application speci�c architectures is in the accelera-

tion of logic simulation. Here, recon�gurable logic is used to prototype custom

hardware. This approach has resulted in dramatic speedups over more traditional

software simulations. A good overview of this area can be found in [15].

Another example of an application speci�c machine is GANGLION [6]. This

machine was used to implement a �xed size three-layer neural network. This

system made use of recon�guration to provide a dramatic speedup over estab-

lished software techniques. This hardware was, however, only useful to simulate

a single neural network con�guration. Modifying the number of neurons in the

system was not possible.

While perhaps the earliest large-scale use of recon�gurable logic, these ma-

chines function much like custom hardware. While they may take advantage of

recon�guration to accomplish their tasks, they are typically used for a single

application. In this sense these machines are more closely related to traditional

�xed custom hardware than more general purpose recon�gurable machines.



3.2 Recon�gurable Logic Coprocessors

The second class of machines based on recon�gurable logic are called Recon�g-

urable Logic Coprocessors (RLC). These machines are relatively small, with only

a few thousand equivalent gates in the RPU. They contain dedicated memory

directly coupled to the RPU. Since the RPU is relatively small, the memory on

these systems is similarly limited. Typically on the order of 1 megabyte or less

is provided.

Figure 4 gives a high-level diagram of the RLC approach. Some examples of

this approach to recon�gurable computing are the Algotronix 2x4 [1] [14], the

AnyBoard system [8], the Xputer [12] and the BORG system [5].

CPU RPU

Memory Memory

Fig. 4. The coprocessor approach.

Because of the relatively small RPU, these systems are used primarily as

small custom logic prototyping systems and are programmed using circuit design

tools and methodologies. They may be used e�ectively to perform tasks of low

computational complexity requiring high throughput. Digital signal processing

is one fertile area of application for this class of machine.

3.3 Custom Instruction Set Architectures

The third type of recon�gurable system is the Custom Instruction Set Architec-

tures, or CISA. These machines trace their roots to earlier custom microcode

machines. They attempt to increase performance by providing customized in-

structions typically unavailable in traditional instruction set architectures.

Figure 5 gives a diagram of this approach to recon�gurable computing. These

machines di�er from recon�gurable logic coprocessors in that they are typically

more tightly coupled to the host CPU and have no dedicated memory. Some

examples of CISA machines are the PRISM systems [2] [17]. the 
exible processor

[18], Spyder [13], the ArMen machine [16] and the CM-2X [7].

CISA machines typically o�er a more traditional programming environment

than other types of systems. This is primarily because the architecture is based

on the instruction set model of computation. This shared programming model



CPU RPU

Memory

Fig. 5. The CISA approach.

permits the host and RPU to cooperate closely. The function con�gured into the

RPU is viewed by the host as another instruction available to the processor. This

permits a simple interface for existing tools and languages. It is likely that these

systems will continue to be used for research in high level language programming

of recon�gurable machines.

While these machines tend to be easier to program, the use of the instruc-

tion set model of computing makes this approach more or less serial. While the

RPU can e�ectively implement complex bit operations not found in traditional

architectures, it is not possible to further exploit parallelism within the RPU via

pipelining.

Additionally, scaling to larger RPUs permit more complex functions, but the

increase in the amount of logic will tend to slow the speed of the RPU. Depending

on the coupling to the host processor, this may require a decrease in the system

clock speed.

Except for special cases, this approach to recon�gurable computing o�ers

relatively modest gains in performance. It is interesting to note that of the �ve

machines cited above, three are multiprocessor systems. This multiprocessor

approach should further boost performance by exploiting data parallelism, but

at the cost of replicated hardware.

3.4 Recon�gurable Supercomputers

The �nal class of recon�gurable machines are Recon�gurable Supercomputers

(RS). These machines have large RPUs, on the order of one million equiva-

lent gates. They typically have large amounts of dedicated memory and a high

bandwidth link to a powerful host processor.

Architecturally, recon�gurable supercomputers resemble recon�gurable logic

coprocessors. The di�erence is primarily one of scale. Recon�gurable supercom-

puters are several times larger, both in RPU and memory size, than recon�g-

urable logic computers. This permits these machines to perform larger and more

complex algorithms.

Some examples of recon�gurable supercomputers are the PAM systems [3],

the Splash systems [9] [10] and the Virtual Computer [4]. All of these systems



tend to be on the low end of the scale, with none having an RPU with one

million equivalent logic gates. These systems are perhaps better referred to as

recon�gurable mini-supercomputers. They are, however, distinguished by their

large memory and I/O bandwidth, as well as their fairly powerful host machines.

Like the smaller recon�gurable logic coprocessors, these systems currently

tend to be programmed using hardware design tools and methodologies. Be-

cause of their larger size, however, they can be used to implement larger and

more complex algorithms, often involving more general arithmetic operations.

Several applications have been implemented on these machines achieving speeds

surpassing that of large vector supercomputers.

4 Performance Issues

Based on the recon�gurable model of computation, all recon�gurable machines

can be viewed as coprocessors which implement custom instructions. A portion

of the increase in performance comes from replacing a sequence of instructions

normally executed on the host with a single complex instruction implemented

in the RPU.

If N cycles of processing on a traditional machine are replaced by recon�g-

urable logic and R cycles are used to con�gure the hardware, the recon�gurable

logic must be used at leastM times to amortize the overhead of recon�guration.

Assuming a single cycle operation for the recon�gurable logic processor, M is

given by Equation 1. This represents the break even point where recon�gurable

logic may be pro�tably used.

M =
R

N � 1
(1)

In order to make e�ective use of the recon�gurable logic,M operations must

be performed to cover the cost of recon�guration. More operation using the

recon�gurable logic will server to save (N � 1) cycles in the overall execution of

the algorithm.

This simple analysis indicates that in order to minimize the break even point,

recon�guration should be rapid and the number of instructions replaced large.

Unfortunately, these parameters are not independent. Typically, large numbers

of instructions will require large amounts of logic to implement, this will, in turn,

require longer recon�guration. While the exact value ofM will vary, it should be

closely tied to the type of recon�gurable device used to implement the hardware.

This implies that more complex functions will require more repetitive oper-

ations to be competitive.

5 Conclusions

A model of computing which bridges the existing gap between traditional in-

struction set architectures and evolving recon�gurable architectures has been



described. Rather than attempting to de�ne recon�gurable computers in terms

of instruction set machines, instruction set machines have been demonstrated to

be a special type of recon�gurable machine.

Recon�gurable machines can be grouped into four categories based on the

size of their recon�gurable logic units and the presence or absence of dedicated

memory. Ignoring application speci�c architectures, machines with no dedicated

memory may be more easily programmed using the traditional instruction set

model of computation. This model, while simplifying programming, is inherently

serial and will limit performance.

Systems with dedicated memory promise higher performance, but require

a more complex programming model. This model must manage control and

communication between the host and the RPU as well as recognize and make

e�ective use of the dedicated memory.

Finally, recon�gurable supercomputers with over one million equivalent logic

gates are on the horizon. Indications are that these machines will be competitive

with existing parallel and vector supercomputers, with orders of magnitude less

hardware. The ability to con�gure and interconnect several complex arithmetic

and logic blocks is likely to make the use of high level languages a practicality,

if not a necessity.

References

1. Algotronix, Ltd. CAL1024 Datasheet, 1990.

2. Peter M. Athanas and Harvey F. Silverman. Processor recon�guration through
instruction-set metamorphosis. IEEE Computer, 26(3):11{18, March 1993.

3. Patrice Bertin, Didier Roncin, and Jean Vuillemin. Introduction to programmable

active memories. Technical Report 3, DEC Paris Research Laboratory, 1989.
4. Steven Casselman. Virtual computing and the virtual computer. In Duncan A.

Buell and Kenneth L. Pocek, editors, IEEE Workshop on FPGAs for Custom Com-

puting Machines, pages 43{48, Los Alamitos, CA, April 1993. IEEE Computer
Society Press.

5. Pak K. Chan, Martine D. F. Schlag, and Marcelo Martin. BORG: A recon�gurable

prototyping board using �eld-programmable gate arrays. In First International

ACM/SIGDA Workshop on Field Programmable Gate Arrays, pages 47{51, 1992.

6. Charles E. Cox and W. Ekkehard Blanz. GANGLION { a fast �eld-programmable

gate array implementation of a connectionist classi�er. IEEE Journal of Solid-State

Circuits, 27(3):288{299, March 1992.

7. Steven A. Cuccaro and Craig F. Reese. The CM-2X: A hybrid CM-2 / xilinx

prototype. In Duncan A. Buell and Kenneth L. Pocek, editors, IEEE Workshop

on FPGAs for Custom Computing Machines, pages 121{130, Los Alamitos, CA,

April 1993. IEEE Computer Society Press.

8. David E. Van den Bout. The anyboard: Programming and enhancements. In
Duncan A. Buell and Kenneth L. Pocek, editors, IEEE Workshop on FPGAs for

Custom Computing Machines, pages 68{77, Los Alamitos, CA, April 1993. IEEE

Computer Society Press.
9. Maya Gokhale, William Holmes, Andrew Kosper, Dick Kunze, Dan Lopresti, Sara

Lucas, Ronald Minnich, and Peter Olsen. SPLASH: A recon�gurable linear logic

array. In International Conference on Parallel Processing, pages I{526{I{532, 1990.



10. Maya Gokhale, William Holmes, Andrew Kosper, Sara Lucas, Ronald Minnich, and
Douglas Sweely. Building and using a highly parallel programmable logic array.

IEEE Computer, pages 81{89, January 1991.

11. Steven A. Guccione. List of FPGA-based computing machines. World Wide Web
page http://www.utexas.edu/~ guccione/HW list.html, 1994.

12. Reiner W. Hartenstein, Alexander G. Hirschbiel, Michael Reidm�uller, Karin

Schmidt, and Michael Weber. A novel ASIC design approach based on a new ma-
chine paradigm. IEEE Journal of Solid-State Circuits, 26(7):975{989, July 1991.

13. Christian Iseli and Edwardo Sanchez. Spyder: A recon�gurable VLIW processor

using FPGAs. In Duncan A. Buell and Kenneth L. Pocek, editors, IEEE Workshop

on FPGAs for Custom Computing Machines, pages 17{24, Los Alamitos, CA, April

1993. IEEE Computer Society Press.

14. Thomas Andrew Kean. Con�gurable Logic: A Dynamically Programmable Cellular

Architecture and its VLSI Implementation. PhD thesis, University of Edinburgh,

Department of Computer Science, January 1989.

15. Henry L. Owen, Ubaid R. Khan, and Joseph L. A. Hughes. FPGA-based emulator
architectures. In Will Moore and Wayne Luk, editors, More FPGAs, pages 398{

409. Abingdon EE&CS Books, Abingdon, England, 1993.

16. F. Raimbault, D. Lavenier, S. Rubini, and B. Pottier. Fine grain parallelism on a
MIMD machine using FPGAs. In Duncan A. Buell and Kenneth L. Pocek, edi-

tors, IEEE Workshop on FPGAs for Custom Computing Machines, pages 2{8, Los

Alamitos, CA, April 1993. IEEE Computer Society Press.
17. M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman,

and S. Ghosh. PRISM-II compiler and architecture. In Duncan A. Buell and

Kenneth L. Pocek, editors, IEEE Workshop on FPGAs for Custom Computing

Machines, pages 9{16, Los Alamitos, CA, April 1993. IEEE Computer Society

Press.

18. Andrew Wolfe and John P. Shen. Flexible processors: A promising application-
speci�c processor design approach. In Proceedings of the 21st Annual Workshop

on Microprogramming and Microarchitecture, pages 30{39. IEEE Press, 1988.

This article was processed using the LATEX macro package with LLNCS style


