
A Recon�gurable Content Addressable Memory

Steven A. Guccione, Delon Levi and Daniel Downs

Xilinx Inc.

2100 Logic Drive

San Jose, CA 95124 (USA)
Steven.Guccione@xilinx.com

Delon.Levi@xilinx.com

Daniel.Downs@xilinx.com

Abstract. Content Addressable Memories or CAMs are popular paral-

lel matching circuits. They provide the capability, in hardware, to search

a table of data for a matching entry. This functionality is a high perfor-
mance alternative to popular software-based searching schemes. CAMs

are typically found in embedded circuitry where fast matching is essen-

tial. This paper presents a novel approach to CAM implementation using
run-time recon�guration. This approach produces CAM circuits that are

smaller, faster and more 
exible than traditional approaches.

1 Introduction

Content Addressable Memories or CAMs are a class of parallel pattern matching
circuits. In one mode, these circuits operate like standard memory circuits and
may be used to store binary data. Unlike standard memory circuits, however, a
powerful match mode is also available. This match mode permits all of the data
in the CAM device to be searched in parallel.

While CAM hardware has been available for decades, its use has typically
been in niche applications, embedded in custom designs. Perhaps the most pop-
ular application has been in cache controllers for central processing units. Here
CAMs are often used to search cache tags in parallel to determine if a cache
\hit" or \miss" has occurred. Clearly in this application performance is crucial
and parallel search hardware such as a CAM can be used to good e�ect.

A second and more recent use of CAM hardware is in the networking area [1].
As data packets arrive into a network router, processing of these packets typically
depends on the network destination address of the packet. Because of the large
number of potential addresses, and the increasing performance demands, CAMs
are beginning to become popular in processing network address information.

2 A Standard CAM Implementation

CAM circuits are similar in structure to traditional Random Access Memory
(RAM) circuits, in that data may be written to and read from the device [2]. In
addition to functioning as a standard memory device, CAMs have an additional



parallel search or match mode. The entire memory array can be searched in
parallel using hardware. In this match mode, each memory cell in the array is
accessed in parallel and compared to some value. If this value is found in any of
the memory locations, a match signal is generated.

Fig. 1. RAM versus CAM functionality.

In some implementations, all that is signi�cant is that a match for the data
is found. In other cases, it is desirable to know exactly where in the memory
address space this data was located. Rather than producing a simple \match"
signal, some CAM implementations also supply the address of the matching data.
In some sense, this provides a functionality opposite of a standard RAM. In a
standard RAM, addresses are supplied to hardware and data at that address is
returned. In a CAM, data is presented to the hardware and an address returned.
Figure 1 shows this high level functionality.

At a lower level, the actual transistor implementation of a CAM circuit is
very similar to a standard static RAM. Figure 2 shows transistor level diagrams
of both CMOS RAM and CAM circuits. The circuits are almost identical, except
for the addition of the match transistors to provide the parallel search capability.

In a CMOS static RAM circuit, as well as in the CAM cell, data is accessed
via the BIT lines and the cells selected via the WORD lines. In the CAM cell,



Fig. 2. RAM versus CAM transistor level circuits.

however, the match mode is somewhat di�erent. Inverted data is placed on the
BIT lines. If any cell contains data which does not match, the MATCH line is
pulled low, indicating that no match has occurred in the array.

Clearly this transistor level implementation is e�cient and may be used to
produce CAM circuits which are nearly as dense as comparable static RAM
circuits. Unfortunately, such transistor level circuits can not be implemented
using standard programmable logic devices.

3 An FPGA CAM Implementation

Of course, a content addressable memory is just a digital circuit, and as such
may be implemented in an FPGA. The general approach is to provide an array
of registers to hold the data, and then use some collection of comparators to see
if a match has occurred. Figure 3 shows a diagram of such a circuit.

While this is a viable solution, it su�ers from the same sort of ine�ciencies
that plague FPGA-based RAM implementations. Like RAM, the CAM is e�-
ciently implemented at the transistor level. Using gate level logic, particularly
programmable or recon�gurable logic, often results in a substantial penalty, pri-
marily in size.

Because the FPGA CAM implementation relies on 
ip-
ops as the data stor-
age elements, the size of the circuit is restricted by the number of 
ip 
ops in the
device. While this is adequate for smaller CAM designs, larger CAMs quickly
deplete the resources of even the largest available FPGA.



Fig. 3. An FPGA-based CAM circuit.

4 The Recon�gurable Content Addressable Memory

(RCAM)

The Recon�gurable Content Addressable Memory or RCAM makes use of run-
time recon�guration to e�ciently implement a CAM circuit. Rather than using
the FPGA 
ip-
ops to store the data to be matched, the RCAM uses the FPGA
Look Up Tables or LUTs. Using LUTs rather than 
ip-
ops results in a smaller,
faster CAM.

The approach uses the LUT to provide a small piece of CAM functionality.
In Figure 4, a LUT is loaded with data which provides a \match 5" function-
ality. That is, whenever the binary encoded value \5" is sent to the four LUT
inputs, a match signal is generated. Note that using a LUT to implement CAM
functionality, or any functionality for that matter, is not unique. An N-input
LUT can implement any arbitrary function of N inputs, including a CAM.

Because a LUT can be used to implement any function of N variables, it is
also possible to provide more 
exible matching schemes than the simple match
described in the circuit in Figure 4. In Figure 5, the LUT is loaded with values
which produce a match on any value but binary \4". This circuit demonstrates
the ability to embed a mask in the con�guration of a LUT, permitting arbitrary



Fig. 4. Using a LUT to match 5.

disjoint sets of values to be matched, within the LUT. This function is important
in many matching applications, particularly networking.

Fig. 5. Using a LUT to match all inputs except 4.

This approach can be used to provide matching circuits such as match all or
match none or any combination of possible LUT values. Note again, that this
arbitrary masking only applies to a single LUT. When combining LUTs to make
larger CAMs, the ability to perform such masking becomes more restricted.

While using LUTs to perform matching is a powerful approach, it is some-
what limited when used with traditional design tools. With schematics and
HDLs, the LUT contents may be speci�ed, albiet with some di�culty. And once



speci�ed, modifying these LUTs is di�cult or impossible. However, modi�ca-
tion of FPGA circuitry at run-time is possible using a run-time recon�guration
tool such as JBits [3]. JBits permits LUT values, as well as other parts of the
FPGA circuit, to be modi�ed arbitrarily at run time and in-system. An Appli-

cation Program Interface (API) into the FPGA con�guration permits LUTs, for
instance, to be modi�ed with a single function call. This, combined with the
partial recon�guration capabilities of new FPGA devices such as Virtex (tm)
permit the LUTs used to build the RCAM to be easily modi�ed under software
control, without disturbing the rest of the circuit.

Finally, using run-time recon�guration software such as JBits, RCAM circuits
may be dynamically sized, even at run-time. This opens the possibility of not only
changing the contents of the RCAM during operation, but actually changing the
size and shape of the RCAM circuit itself. This results in a situation analogous
to dynamic memory allocation in RAM. It is possible to \allocate" and \free"
CAM resources as needed by the application.

5 An RCAM Example

One currently popular use for CAMs is in networking. Here data must be pro-
cessed under demanding real-time constraints. As packets arrive, their routing
information must be processed. In particular, destination addresses, typically
in the form of 32-bit Internet Protocol (IP) addresses must be classi�ed. This
typically involves some type of search.

Fig. 6. Matching a 32-bit IP header.

Current software based approaches rely on standard search schemes such as
hashing. While e�ective, this approach requires a powerful processor to keep



up with the real-time demands of the network. O�oading the computationally
demanding matching portion of the algorithms to external hardware permits less
powerful processors to be used in the system. This results in savings not only
in the cost of the processor itself, but in other areas such as power consumption
and overall system cost.

In addition, an external CAM provides networking hardware with the ability
to achieve packet processing in essentially constant time. Provided all elements
to be matched �t in the CAM circuit, the time taken to match is independent
of the number of items being matched. This provides not only good scalabil-
ity properties, but also permits better real-time analysis. Other software based
matching schemes such as hashing are data-dependent and may not meet real-
time constraints depending on complex interactions between the hashing algor-
tihm and the data being processed. CAMs su�er no such limitations and permit
easy analysis and veri�cation.

Figure 6 shows and example of an IP Match circuit constructed using the
RCAM approach. Note that this example assumes a basic 4-input LUT structure
for simplicity. Other optimizations, including using special-purpose hardware
such as carry chains are possible and may result in substantial circuit area savings
and clock speed increases.

This circuit requires one LUT input per matched bit. In the case of a 32-
bit IP address, this circuit requires 8 LUTs to provide the matching, and three
additional 4-input LUTs to provide the ANDing for the MATCH signal. An array
of this basic 32-bit matching block may be replicated in an array to produce the
CAM circuit. Again, note that other non-LUT implementations for generating
the MATCH circuit are possible.

Since the LUTs can be used to mask the matching data, it is possible to put in
\match all" conditions by setting the LUTs to all ones. Other more complicated
masking is possible, but typically only using groups of four inputs. While this
does not provide for the most general case, it appears to cover the popular modes
of matching.

6 System Issues

The use of run-time recon�guration to construct, program and reprogram the
RCAM results in some signi�cant overall system savings. In general, both the
hardware and the software are greatly simpli�ed.

Most of the savings accrue from being able to directly recon�gure the LUTs,
rather than having to write them directly as in standard RAM circuits. Recon-
�guration rather than direct access to the stored CAM data �rst eliminates all
of the read / write access circuitry. This includes the decode logic to decode each
address, the wiring necessary to broadcast these addresses, the data busses for
reading and writing the data, and the IOBs used to communicate with external
hardware.

It should be pointed out that this interface portion of the circuitry is sub-
stantial, both is size and complexity. Busses typically consume tri-state lines,



which are often scarce. Depending on the addressing scheme, tens of IOBs will
necessarily be consumed. These also tend to be valuable resources. The address
decoders are also somewhat problematic circuits and often require special pur-
pose logic to be implemented e�ciently. In addition, the bus interface is typically
the most timing sensitive portion of the circuit and requires careful design and
simulation. This is eliminated with the use of run-time recon�guration.

Finally, the system software is simpli�ed. In a standard bus interface ap-
proach, device drivers and libraries must be written, debugged and maintained
to access the CAM. And when the system software or processor changes, this
software must be ported to the new platform. With the RCAM, all interfacing
is performed through the existing con�guration port, at no additional overhead.

The cost of using the con�guration port rather than direct hardware access
is primarily one of setup speed. Direct writes can typically be done in some
small number of system cycles. Recon�guration of the RCAM to update table
entries may take substantially longer, depending on the implementation. Par-
tial recon�guration in devices such as Virtex permit changes to be made more
rapidly than in older bulk con�guration device, but the speed may be orders
of magnitude slower than direct hardware approaches. Clearly the RCAM ap-
proach favors applications with slowly changing data sets. Fortunately, many
applications appear to �t into this category.

7 Comparison to Other Approaches

While CAM technology has been in widespread use for decades, there has been
little interest in producing commercial CAM devices. This recent interest in
CAMs, driven primarily by the high-performance networking market, has re-
sulted in commercially available CAM devices. Music Semicondictor [4] and Net
Logic [5] are two companies which provide CAM devices tailored speci�cally for
the networking market.

In addition, at least one FPGA manufacturer, Altera, has begun to embed
CAM hardware into their Apex(tm) devices. While this circuitry is embedded in
an FPGA, it is special purpose and not part of the general con�gurable fabric.
It is included here for comparison, but it should be pointed out that special
purpose hardware is readily inserted into FPGAs. The cost here is in
exibility.
The special purpose hardware must be used for a speci�c circuit, at a speci�c
physical location, or not used at all. In this sense, this embedded CAM has
more in common with custom solutions than programmable solution. But the
speci�cations are included here for comparison.

Figure 7 gives some sizes for current commercially available devices. While
these are custom CAM implementations and can expected to be denser than
FPGA implementations, the RCAM sizes are within the general range of that
available from custom implementations. In addition, the RCAM circuits are more

exible and may be placed at any location within the FPGA and may be inte-
grated with other logic in the design. Finally, the RCAM approach is approxi-
mately 3-4 times denser than attempting to implement a CAM using an FPGA



CAM (Virtex V1000 ) 768 x 32 384 x 64

RCAM (Virtex V1000) 3K x 32 1K x 64

Quality Semiconductor 1K x 64 2K x 64

Net Logic 16K x 64 8K x 128

Music Semiconductor 2K/4K/6K x 32 2K/4K/6K x 64

Altera APEX 1K-8K x 32 500-4K x 64

Fig. 7. Some commercially available CAM devices.

and traditional design appraoches. Optimizations using logic such as the Virtex
carry chain also indicate improvements of an additional 40%.

8 Associative Processing

Today, advances in circuit technology permit large CAM circuits to be built.
However, uses for CAM circuits are not necessarily limited to niche applications
like cache controllers or network routers. Any application which relys on the
searching of data can bene�t from a CAM-based approach. A short list of some
potential application areas that can bene�t from fast matching are:

{ Arti�cial intelligence

{ Database

{ Computer Aided Design

{ Graphics

{ Computer Vision

Much of the work in using parallel matching hardware to accelerate algo-
rithms was carried out in the 1960s and 1970s, when several large parallel match-
ing machines were constructed. An excellent survey of so-called Associative Pro-
cessors can be found in Yau and Fung [6].

With the rapid growth both in size and speed of traditional processors in the
intervening years, much of the interest in CAMs has faded. However, as real-
time constraints in areas such as networking become impossible to meet with
traditional processors, solutions such as CAM-based parallel search will almost
certainly become more prevalent.

In addition, the use of parallel matching hardware in the form of CAMs can
provide another more practical bene�t. For many applications, the use of CAM-
based parallel search can o�oad much of the work done by the system processor.
This should permit smaller, cheaper and lower power processors to be used in
embedded applications which can make use of CAM-based parallel search.



9 Conclusions

The RCAM is a 
exible, cost-e�ective alternative to existing CAMs. By using
FPGA technology and run-time recon�guration, fast, dense CAM circuits can
be easily constructed, even at run-time. In addition, the size of the RCAM may
be tailored to a particular hardware design, or even temporary changes in the
system. This 
exibility is not available in other CAM solutions.

In addition, the RCAM need not be a stand-alone implementation. Because
the RCAM is entire a software solution using state of the art FPGA hardware,
it is quite easy to embed RCAM functionality in larger FPGA designs.

Finally, we believe that existing applications, primarily in the �eld of network
routing, are just the beginning of RCAM usage. Once other applications realize
that simple, fast, 
exible parallel matching is available, it is likely that other
applications and algorithms will be accelerated using this approach.

10 Acknowledgements

Thanks to Kjell Torkellesson andMario Dugandzic for discussions on networking.
And thanks especially to Paul Hardy for early RCAM discussions.

References

1. R. Neale, \Is content addressable memory (CAM) the key to network success?,"

Electronic Engineering 71, pp. 9{12, February 1999.
2. N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley

Publishing Company, 1985.

3. S. A. Guccione and D. Levi, \XBI: A Java-based interface to FPGA hardware," in
Con�gurable Computing Technology and its use in High Performance Computing,

DSP and Systems Engineering, Proc. SPIE Photonics East, J. Schewel, ed., pp. 97{

102, SPIE { The International Society for Optical Engineering, (Bellingham, WA),
November 1998.

4. \Music semiconductor." World Wide Web page http://www.music-ic.com/, 1999.

5. \Net logic microsystems." World Wide Web page http://www.netlogicmicro.com/,

1999.

6. S. S. Yau and H. S. Fung, \Associative processor architecture { a survey," Comput-

ing Surveys 9, pp. 3{27, March 1977.

7. Xilinx, Inc., The Programmable Logic Data Book, 1996.

This article was processed using the LATEX macro package with LLNCS style


