
Automated Extraction of Run-Time Parameterisable Cores from
Programmable Device Configurations

Philip James-Roxby
School of Electronic and Electrical Engineering

University of Birmingham
Edgbaston, Birmingham, B15 2TT

United Kingdom
P.B.James-Roxby@bham.ac.uk

Steven A. Guccione
Xilinx, Inc.

2100 Logic Drive
San Jose, CA 95124

United States
Steven.Guccione@xilinx.com

Abstract

As FPGA devices have increased in density, the
demand for pre-designed logic modules or cores has
increased correspondingly. These cores permit reuse of
portions of existing designs, reducing the overall design
effort. Currently, nearly all cores are specified in some
static netlist-oriented format. Such specifications are not
well suited for use in a run-time reconfigurable or run-
time customizable environment. This paper describes
JBitsDiff, a tool constructed using Xilinx’s JBits™
software, which extracts circuit information directly from
configuration bitstreams and produces pre-routed and
pre-placed cores suitable for use at run time. Further
work to produce parameterizable and reconfigurable
cores using JBitsDiff, and some of the pitfalls
encountered are also discussed.

1. Introduction

As FPGA devices have increased in size and
complexity, so has the demand for pre-designed logic
modules, or cores. With FPGA devices currently in the
million gate range, commercially available cores have
increased in both number and size. Pre-constructed and
pre-tested functions consisting of tens of thousands of
gates or more are commonplace. Reuse of such
intellectual property has become necessary to permit
larger FPGA design to be implemented efficiently.

One recent innovation in the packaging of intellectual
property is the Run-Time Parameterizable (RTP) Core
[1]. These cores are used in the JBits™ [2] software
environment and exist as compiled Java classes which
directly modify FPGA resources. While this approach
provides support for run-time reconfiguration and permits
on-the-fly customization of logic, existing cores are

usually defined in formats which are not readily
convertible for use at run-time.

Today, nearly all existing FPGA tools are based on
netlist descriptions of circuits. While this provides a
common format for exchanging and manipulating cores, it
is not directly useful in the JBits approach. This makes it
difficult to use the existing body of cores available for
FPGA designs.

This paper describes JBitsDiff, a tool which uses JBits
to extract circuit information from cores at the
configuration bitstream level. Using this approach,
existing cores may be translated into a form useful to
JBits, independent of the original design method Also
addressed are barriers to run time reconfiguration such as
address line swapping in Look-Up Tables (LUTs).

2. Parameterized Core Library Development

A framework for developing parameterised core
libraries is described in [3], with the XC6200 series as the
target FPGA. A declarative language Ruby is used to
allow an initial exploration of the design space. The Ruby
description of the core is then (manually) translated into
parameterised VHDL. This VHDL contains placement
attributes, which are used for the subsequent automatic
synthesis and translation to configuration bitstream.
These attributes ensure efficient implementations of the
cores over a range of parameters. The framework was
further developed and described in [4]. The block
language Pebble is used for the initial description, and is
automatically translated into parameterised VHDL.

Commercial toolsets also now include sophisticated
core generation systems. Traditionally, the library
components supplied with a design environment have
been quite low level, encompassing registers, basic

arithmetic units, and replacements for popular logic
families. Tools such as the Xilinx Core Generator
supplied as part of the Xilinx Foundation design
environment offer cores such as large dual port memories
or entire PCI interfaces. In order to promote re-use, these
cores can often be parameterised by users when designing
their overall system.

In both the cases outlined above, the role of the cores
in the design flow is similar. They are intended to be used
early in the design flow, producing netlists in the case of
Core Generator, and synthesisable VHDL in the case of
Luk’s framework. The place of each of the core types in a
hypothetical design flow is shown in figure 1.

Place and route

Ruby/Pebble core Design

Synthesis

Bitstream
generation

VHDL VHDL

EDIF

Proprietary
format

Bitstream

Core Generator
core

EDIF

Figure 1. Cores in a standard VHDL design flow

An alternative approach to cores is to insert them later
in the design flow. Other core generation systems
produce information which is processed by vendor tools:
typically, synthesis and place and route, or in certain
cases, place and route only. This paper presents a method
of generating cores which can be inserted at the very last
part of the design flow: after the configuration bitstream
has been generated. Information is generated which can
be directly integrated into existing device configurations
or into existing configuration datastreams. In fact, since
this generation could theoretically take place at
application run-time, these cores are known as Run-Time
Parameterisable (RTP) Cores [1].

Parameters to modify RTP Cores can thus be supplied
either at system design-time, as with standard cores, or at
application run-time. As far as core design is concerned,
no distinction is made between these two cases. A further
point is that no further processing of the design takes
place after the RTP core is inserted into a bitstream:
therefore, any logic minimization or other design

customizations have to be performed by the designer of
the core.

Previously, parties other than the device vendors have
been able to produce core libraries because the cores were
output in a standard format such as VHDL or EDIF. If
figure 1 is examined, it can be seen that vendor tools take
over once these cores have been assimilated into the
design. The vendor-supplied place and route tools
produce a proprietary format, which is subsequently
processed by a further vendor-supplied tool to produce a
proprietary configuration datastream. One device series
that allowed an open format up to and including
configuration was the XC6200 series. This allowed a
complete design environment to be constructed [5], as
well as allowing the run-time parameterisation of cores.

3. The JBits Design Environment

If open device architectures are not supported, the
alternative is to produce tools that open the proprietary
configuration datastream, whilst maintaining a level of
security to protect intellectual property. JBits is an API
supporting the reading, manipulating and writing
configuration bitstreams for Xilinx XC4000™ and
Virtex™ series devices [2]. It can be used in a number of
ways. Firstly, it can be used for the low-level analysis of
existing designs produced by standard design
methodologies. This analysis is entirely passive, and in no
way affects the functionality of the design. Secondly, a
designer can create new designs using the API, directly
constructing cores within a bitstream. Thirdly, JBits can
be used by a designer to manipulate existing designs,
making changes through the API to the original design,
once the internal structure is known.

The use of software for the construction of logic
circuits and cores is not new. It is interesting to trace the
development of JBits from its earliest form. The Java
Environment for Reconfigurable Computing (JERC) is a
software environment which allows logic and routing to
be configured and macros to be constructed at run time
[6]. JERC targets the XC6200 series, and is designed in
two layers. The bottom layer (Level 0) is intended to
abstract away the underlying MUX-based hardware
implementation. The top layer (Level 1) offers a series of
logic cell primitives, both Boolean functions and bit
storage that are built from level 0 facilities. Both level 0
and level 1 primitives can be used from within a Java
program, configuring both logic and routing at run time.

The SPODE circuit specification library operates in a
similar manner to JERC, but is not designed in layers [7].
Rather, SPODE allows full access to all configurable
resources within the XC6200 series, whilst still providing
primitives to configure at a logic cell level. The library
functions within SPODE are called from a C program,
which produced a configuration file. This file can
subsequently be used to configure an XC6200 series
device. JERC and SPODE were finally combined to form
JERCng (JERC next generation), which is a full Java
environment allowing the complete functionality of the
XC6200 series devices to be utilized [8].

The cell architecture of the XC6200 series devices
naturally supported constructing circuits from simple
primitives, with relatively simple wiring. JBits is an API
that allows access to the programmable resources of
Xilinx Virtex devices, and builds on the original version
that operated on the XC4000 series, described in [2]. At
the heart of JBits are four functions. The first two allow
configuration datastreams to be read and written. The
third function allows the state of a programmable resource
to be queried, whilst the fourth function allows the state of
a programmable resource to be set to a defined value. The
rest of the JBits API is a series of constants defining each
of the programmable resources within the device, and the
values they can be set to. JBits thus hides the proprietary
nature of the configuration datastream whilst still
allowing full read and write access to all programmable
resources.

JBits application

Configuration
datastream

write read set get

Open

Proprietary

Figure 2. The JBits API.

4. Implementing Cores Using JBits

JBits cores can either be fixed or parameterized. Fixed
cores cannot be modified by the end designer, whilst

parameterized cores allow the user to enter information
about the required core, and a custom circuit is
constructed which embodies the user’s information, such
as the operand width for an adder. Initially, fixed cores
will be considered.

Fixed JBits cores are Java class files, with the
following interface. Firstly, the location of the core’s
origin on the programmable device is defined in terms of
CLB coordinates, with (0,0) corresponding to the lower,
left corner of a device. The origin is the lower, left corner
of the bounding box that wholly contains the cores
functionality and routing, and can be both set and read.
The extent of the bounding box is also defined, and can be
set and read. A number of identification mechanisms
exist, which interface with the BoardScope software [9]
and are not considered here. JBits cores can also be
protected, preventing interrogation of the programmable
resources within the bounding box. Finally, the user is
able to instantiate the whole of the core in an existing
datastream by a set() method. The set() method contains
the sequence of JBits.set() calls required to set all the
programmable resources within the bounding box to the
desired values.

Thus, the effort of designing a JBits core resides in
constructing the set() method. All other functionality is
easily added. As noted previously, there is no processing
step after the generation of the JBits core: therefore, it is
crucial that the core is efficient and complete.

Modern logic synthesis tools represent many person-
millennia of human design effort. On first inspection, it
appears that the designer of a JBits core library is not able
to take advantage of this effort. Furthermore, individuals
and organisations are likely to have a great deal of
intellectual property scattered over various designs.
However, this IP is likely to have been produced by a
variety of design capture tools, and is not in a form to be
directly incorporated into a JBits core library.

This situation is similar to the situation discussed by
Brebner, when considering swappable logic units (SLU)
on the XC6200 series [10]. It was argued that due to the
relative immaturity of the SLU concept, SLU awareness is
unlikely to be built into design tools. Therefore, a tool
was presented which could detect SLUs within existing
XC6200 circuitry through a combination of automatic
detection and user knowledge.

5. Automated Core Generation

In order to incorporate IP cores in a JBits core library,
it is necessary to be able to translate the IP cores into JBits
cores, in a manner that is independent of the original
methodology used to construct them. One thing all IP
cores have in common is that ultimately they are
transformed into configuration datastreams, or to be more
accurate, instantiations of the cores are transformed.
Since JBits allows configuration datastreams to be
queried, it is theoretically possible to construct a tool that
can transform the configuration datastream constructed
from an IP core into a JBits core.

A similar tool is presented in [13] though it is used for
a different purpose. The tool ConfigDiff accepted two
XC6200 series configuration files, and produced the
incremental configuration that allowed the first
configuration to be transformed into the second
configuration. ConfigDiff was possible due to the open
architecture of the XC6200 series, and was economical in
practice because of the random access that was permitted
to the memory map storing the configuration.

ConfigDiff produces all configuration data items
required to transform one configuration (current) into
another (next). Parts of the logic that are in next but not
in current are configured, whilst parts of the logic that are
in current but not next are set to unused logic. Heron
and Woods [11] presented a proposed modification to
ConfigDiff, allowing rapid configuration in two
directions, both from current to next, and back from next
to current. In the modified version, parts of the logic that
are in current but not in next, are disconnected from the
rest of the circuitry but left for the most part intact. If
reconfiguration is then required back from next to
current, a smaller number of changes are required overall
than in the original ConfigDiff, which would require the
logic changed to unused logic in the first transformation
to be changed back to its original value.

It is pointed out by Heron and Woods that the
technique can be applied to device families other than the
XC6200: such a tool has now been produced called
JBitsDiff, and versions have been produced to work with
both the XC4000 series and the Virtex series. JBitsDiff
accepts two configuration datastreams as input: again,
these are referred to as current and next. In addition, a
rectangular bounding box is defined. JBitsDiff
automatically produces a JBits core as output. This JBits
core, which is a series of JBits calls, can then be inserted

into an existing configuration datastream (usually
current).

The bounding box is required to define the extent of
the logic. The tool makebits that generates configuration
information for the XC6200 could be made to only
generate data items for a section of the device, since the
device supported partial configuration. The equivalent
tool bitgen for the Virtex and XC4000 series currently
produces data items for the whole of the device. In the
case of the XC4000 series, this is due to the serial nature
of configuration. The Virtex series, however, supports
partial configuration: this is not currently implemented in
bitgen. Therefore, it is necessary to define the bounding
box of the core manually.

current next

after calling set after calling clear

Figure 3: Operation of JBitsDiff.

The core contains three main functions. The first
function is the set() method described previously. The
set() method inserts all the logic from next within the
bounding box into current. The clear() method inserts all
the logic from current within the bounding box into next.
Finally, the default() method sets all logic within the
bounding box to the default values set when the device is
first powered up. The operation of JBitsDiff is shown
diagrammatically in figure 3. Other functions allowing
logic to be powered down and powered back up by
removing and adding their clock signals are also
produced, but are not considered here.

It is important to realise that the current configuration
need not be the base configuration for calling set(). Set()
can be called using any configuration, and will insert the

area of logic enclosed in the bounding box into the new
configuration. The area of logic enclosed in the bounding
box can be considered as a core. This core can be
instantiated at any position within the new configuration,
providing the bounding box can be wholly enclosed at the
new position.

Figure 3 shows the two cores well separated on the
device. This need not be the case. However, the nature of
Virtex routing means that care must be taken that cores do
not share routing resources, unless this is intentional.
JBitsDiff reports any clashes of resources between current
and next, rather than prohibiting them, since currently,
this is the way in which cores are connected together.
Similarly, the fact that two cores share a clock source may
be intentional. However, care must be taken with bi-
directional lines to ensure they are only driven from one
source.

6. Case Study : The Constant Coefficient
Multiplier

6.1. Core Description

The constant coefficient multiplier under consideration
here is the KCM [12], which simplifies the task of
multiplying a variable by a constant k. The KCM holds a
number of copies of the k times table, each of which
contains 16 entries. When multiplying an n-bit variable
by a constant, n/4 copies of the table are required. Each
n/4 bit nibble of the variable addresses a table, and the
partial products produced are summed to provide the
required product.

Upper
16x12

Look-up
table

Lower
16x12

Look-up
table

12

8

4

12

8

4

4 16

Figure 4: The KCM schematic diagram.

A constant coefficient multiplier which multiplies an
eight bit variable by an eight bit constant will be
considered. The schematic is shown in Figure 4. The

circuit was described using VHDL, initially without any
placement constraints or floorplan, in order to investigate
the core size. The core took its input from device pins,
and drove its output to device pins. Whilst this is the case
for some cores, it is by no means a pre-requisite, hence
registers were placed around the core to emulate the direct
connection of the cores to other logic or routing cores.

+ M

+ M

+ M M M

+ M M M M

+ M M M

+

+ = Addition
M = Memory
∆ = Register

Figure 5: The KCM synthesized layout.

M M

M M

M M

M M

M M

M M

+

+

+

+

+

+

Figure 6: The KCM floorplanned layout.

The constant coefficient multiplier could rapidly be
designed and tested using mainstream tools. The VHDL
was designed and tested using Active VHDL, and
synthesised using Synplicity. The resulting EDIF netlist
was then passed through the Xilinx M1 tools to produce
the configuration datastream. Initially M1 produced the
circuit shown in Figure 5. The floorplanner was then
used to align the two memories in the same column, and
also to tidy up the placement of the delay registers. The
floorplanned version is shown in Figure 6.

6.2. Producing an initial core

An initial core can automatically be produced by
running the JBitsDiff tool using the bitstream generated
from the floorplanned layout as the next configuration.
Initially, it will be assumed that the core is to be
instantiated into empty space on a device: therefore, it is
only necessary to specify the non-default resources. The
simplest method of doing this is to specify an empty
bitstream as the current configuration. JBitsDiff returns
a set method for the core, allowing it to be instantiated
into a new bitstream. The KCM core covers 16 slices: the
set method for this core is some 520 lines of code. 80% of
this code deals with routing, both the routing of signals
into the CLBs, and the setting of switches in the general
routing matrix.

This core is quite limited: it represents a point solution
of the KCM. It is of fixed bit-width, the level of
pipelining is fixed, and most drastically, the constant
encoded within it is fixed. Methods of extending the
scope of the core are now investigated.

6.3. Varying the constant

Initially, it is important to understand how the constant
is encoded in a KCM. The constant is used to produce a
times-table that can be addressed by the multiplier, as
shown in Figure 4. For an 8 bit unsigned multiplicand, a
maximum of 12 bits of storage is required for each entry
in the times table. The look-up tables in the KCM are
implemented as twelve 16-bit storage elements, which
map simply to the internal look-up tables of the Virtex
slices. Each of these 16 bit-LUTs corresponds to a bit
position within the overall table. By using the floorplan,
it is possible to arrange these physically in ascending
order, such that the LUT corresponding to the least
significant bit of the overall table is in the bottom LUT.
Therefore, since the contents of the original table are
known, it is possible to determine what the contents of
each of the twelve 16-bit LUTs should be.

It would be tedious and time consuming to repeat the
process of synthesizing a KCM core for each of the
possible constants, producing for an 8 bit version, 256
versions of the set method. Other run-time
reconfiguration methodologies based on static design tools
implicitly or explicitly take this approach. In this
approach, the sections of the core requiring run-time
modification and the type of modification performed are
supplied by the core designer as part of the core API.

6.4. Address lines

The values stored in the F and G LUTs of the Virtex
slice can be read by using the relevant JBits constant. For
example, to read the value stored in the F LUT of slice 0
of CLB(0,0) the following code is used:

stored=JBits.get(0, 0, LUT.SLICE0_F);

Similarly, to set the value stored in the F LUT to a new
value, the following code is used

JBits.set(0,0, LUT.SLICE0_F, newValue);

Theoretically, it would be a simple matter to produce a
Java method allowing the mapping of a KCM look-up
table to each of the primitive LUTs that implement the
overall table. From the floorplan, it can be determined
which bit position of the look-up table is mapped into
which LUT: 24 JBits.set() calls would be required, 12 for
each look-up table.

However, when the router assigns ROM address lines
to the lines of the F and G LUT slices, it does so
according to an overall cost function : simplifying the life
of JBits core designers is not one of the terms of the cost
function. As far as the router is concerned, for a 16x1
ROM, there is no real reason to map the ROM address
lines in order to the address lines of the LUT. They can
be assigned in any order, and the ROM initialisation value
scrambled to produce the correct output when addressed.
This is shown schematically in Figure 7.

a3

a2

a1

a0

F4
F3
F2
F1

O

Figure 7: Router assignment of address lines.

Consider the case for storing the value 0000 0001 0000
0000 in the 16x1 LUT shown. If the router decides that
the address lines a3 and a0 have to effectively be swapped
over, the initialisation value must change. The case
where the LUT would output a 1 when a3 is 1 and a2,a1

and a0 are all zero, now becomes the case where the LUT
outputs a 1 when F1 is 1, and F2, F3 and F4 are all zero.
Therefore, the initialisation value becomes 0000 0000
0000 0010. This will produce the correct output when the
address lines a3..a0 are used.

When JBits queries the value stored in a look-up table,
the initialisation value is returned. Therefore, if this

initialisation value has been mapped to compensate for the
router assignment of address lines, the value returned will
not be the value specified in the original circuit
description. Similarly, if JBits sets a value stored in a
look-up table without regard for the router assignment of
address lines, the LUT will not behave as planned.

Therefore, a method is required to automatically
determine the address mapping used by the router. There
are two methods available. The first is to use JBits to
trace address lines around the device by querying the state
of routing resources. This would determine the
interconnections between the inputs of the LUTs and
other logic dealing with the address lines: for example, an
input register, or device pins. With the complex routing
structure of Virtex, this is quite a difficult task.

A simpler method is to utilise an interesting feature of
a set of the 65536 possible initialisation values for a 16x1
LUT. The router can choose 4! = 24 possible ways of
mapping the 4 address lines, which is the set M. An
initialisation value I is chosen, and mapped by each Mi

from M, producing a set of 24 new initialisation values
Wi. For a certain set of numbers, the only way to retrieve
I from the value Wi is by applying the original mapping
Mi.

Clearly, 0x0000 is not a member of this set: any of the
24 mappings Mi would retrieve 0x0000 no matter which
of the mappings was originally used. Similarly, 0x0001 is
not able to discriminate between the swapping of the three
upper address lines. The smallest value that satisfies the
criteria is 0x001A.

The design flow is now as follows. The initialisation
values of the LUTs are set to one of these special values.
For each LUT, the router then manipulates the address
lines, producing a new initialisation value if appropriate.
Once the configuration datastream is produced, JBits is
used to read back the values stored in each of the LUTs.
Each of the 24 possible mappings is then applied to the
original initialisation value, and the mapped value is
compared to the value read back from the LUT. Only one
of these mapped values will match the value read back,
and hence the address line mapping for each LUT can be
determined.

The mapping of address lines is performed by the
router, and is embodied in the settings of the routing
resources surrounding the various LUTs. It therefore falls
outside of the scope of the reconfigurable section of the
circuit. This means that determining the mapping of
address lines can be performed at core design-time, since

these mappings remain fixed. This is however, the point
at which the automatic extraction is complete: it is now up
to the core designer to manually add this functionality.
Once the mappings are automatically determined, it is a
simple matter to produce a Java method allowing the
mapping of a KCM look-up table to each of the primitive
LUTs that implement the overall table. An example
method is shown in Figure 8.

public void
setConstant(int iConstant,jBits jBits, int clbRow, int

clbColumn) {
 int [][]iKCMtable = new int [12][16];
 int iBitPos,iBit;
 int [] iInit = new int [16];
 int [] iWarped = new int [16];

 iKCMtable = getKCMtable(iConstant);
 for (iBitPos=0; iBitPos<12; i++) {
 for (iBit=0;iBit<16;iBit++)
 iInit[i] = iKCMtable[iBitPos][i];
 iWarped = addressWarp(iInit,table0warp[iBitPos]);
 if ((iBitPos%2)==0)
jBits.set(clb_row+(iBitPos/2),clb_col+1,LUT.SLICE0_F,iWarped);
 else
jBits.set(clb_row+(iBitPos/2),clb_col+1,LUT.SLICE0_G,iWarped);
 iWarped = addressWarp(iInit,table1warp[iBitPos]);
 if ((iBitPos%2)==0)
jBits.set(clb_row+(iBitPos/2),clb_col+1,LUT.SLICE1_F,iWarped);
 else
jBits.set(clb_row+(iBitPos/2),clb_col+1,LUT.SLICE1_G,iWarped);
 } /* end for() */
} /* end setConstant() */

Figure 8: Example method allowing
parameterisation by a constant

6.5. Changing pipelining

Pipelining is often present in FPGA designs due to the
register-rich architecture. At a slice level, it is clear how
pipelining operates: the LUTs implementing the logic
function drive a register and a wire directly. To get a
pipelined version of a signal, it is necessary to use the
output of the register rather than the output of the LUT to
drive the following circuitry. Since pipelining registers in
multiple parts of the device will operate at the same
frequency, the clock to each register will normally be
supplied by one of the dedicated global clock signals.

In the Virtex devices, the part of the internal structure
responsible for propagating signals from the slices onto
routing wires is a series of multiplexers, modelled in JBits
as an output bus. Each multiplexer driving a signal on
the output bus takes 12 inputs from the inside of the slice,
and passes at most one of these signals. The output bus
can then be connected to external routing. Amongst the
inputs to the multiplexer are the outputs of each internal
look-up table, and the output of the registers.

Therefore, to allow pipelining to be specified as a
parameter, it is necessary to first find the sections of the
core that correspond to the outputs to be pipelined, and
modifying the relevant bit of the output bus to take its
input from the registered output rather than the output
directly. In addition, a clock signal must be provided.

One complication is with the use of skewing registers,
which are required to ensure that the correct operands
appear at a functional unit at the same time. In the case
of the KCM, if the adder shown in Figure 4 is pipelined, a
skewing register is required for the lower four bits to
ensure the correct output is generated when the lower four
bits of one the LUTs is recombined with the output of the
adder. It is easier to construct the initial core using the
maximum amount of pipelining with skewing registers if
appropriate. Then the sections of the JBits core that deal
with pipelining registers can manually be removed to a
separate method, replacing pipelined LUTs with LUTs
driving the output bus directly, and replacing sole
registers intended as skewing registers with buffers again
driving the output bus directly.

6.6. Changing clock sources

Determining the source of the clock signal for a core is
performed by the place and route software. It may
however, be necessary to modify the assigned clock at
design time, or indeed at run-time, selecting a different
clock. Consider the case of a device containing a series of
non-cooperating JBits cores designed to operate at
different clock frequencies. At design time, they may all
have been assigned the same clock signal, as the router
was not aware they would be used simultaneously. It is
precisely this level of fine control over system resources
that is required for effective run-time reconfiguration.

In the case under consideration, the clock drives each
of the pipeline registers, and was selected by the place and
route software as Global Clock 1. The following line
shows how the clock source is set in the body of the core.

jBits.set(r,c,S0Clk.S0Clk, S0Clk.GCLK1);

It is possible to allow the clock source to be supplied as
a parameter to the core. Each call that sets the source of a
clock signal is manually copied from the body of the set
method, and is placed in a separate method, which accepts
a constant defining the clock source. This constant is
then used to select which of the global clocks should be
used to drive the clocked sections of the core.

6.7. Changing size of operands

Currently, the KCM core uses 8 bit operands. In order
to increase the size of the operands, extra look-up tables
are required, and extra adders are required to deal with
the output of the new look-up tables. Currently with this
technique, using the size of operands as a run-time
parameter would be difficult. Therefore, separate cores
would be produced to deal with common operand sizes:
for example, in [12], multipliers working with 8, 10 and
16 bit operands are implemented.

6.8. Final core structure

The final core has the following functionality. Firstly,
a set method is provided, which constructs a “default”
KCM. This default KCM uses the constant ‘0’, has two
levels of pipelining (the ROMs and the adder are
pipelined), and uses gclk1. Three methods of
parameterisation are provided: Firstly, the constant can
be set to any unsigned 8 bit value. Secondly, pipelining
can be specified, to either remove all pipeline registers,
pipeline just the ROMs, pipeline just the adder, or
pipeline the ROMs and the adder. Finally, the source of
the clock signal can be specified, to any of the four inbuilt
clocks. In each case, this parameterisation can be
performed at run-time: configuration datastreams are
constructed directly, without any further passes through
design tools.

Parameter Values Example

Constant 0..255 MyCore.setConstant(123,jBits,0,0);

Pipeline 0..3 MyCore.setPipeline(kcm.justAdder,jBits,0,0);

Clock 1..4 MyCore.setClock(kcm.gclk1,jBits,0,0);

Table 1: Final core interface

7. Conclusions and Further Work

A method of constructing JBits cores has been
presented, which allows cores to be produced by a wide
range of design methodologies before being automatically
transformed into JBits cores. Tool support is provided to
produce an initial core from an existing configuration
datastream. Generally, this initial core will be
insufficient, as it represents a single parameterised version
of a core. Therefore, a method of manually adding
parameters has been described.

The main drawback with the tool is the sheer amount
of code generated for a core, and the lack of structure.
This is because in order to offer the immunity to the
original design methodology, JBitsDiff operates at the
lowest possible level – the configuration datastream. At
this level, there is no concept of a design hierarchy, the
whole circuit is simply flattened and transformed into the
1’s and 0’s making up the configuration datastream.
Inferring structure from this is very difficult.

It is possible for the tool to determine the usage of a
CLB from the settings of the programmable resources.
For instance, adders can be found by looking for CLBs
using the dedicated carry chain. Currently, the tool uses
this information to build a “textual schematic” of the core.
The designer can then use this schematic to begin to
understand the structure.

As mentioned previously, the bulk of the code deals
with the routing resources. Currently, these are simply
displayed as they are encountered: no attempt is made to
determine the source or destination of the routes.
Therefore, the user is presented with a complex series of
seemingly unconnected routing assignments. In a future
version of the tool, we wish to separate the routing into a
series of connections, defining the start and end points of
the route as a comment, followed by the series of calls to
the programmable resources configuring that connection.
The end user would then be able to determine repeated
patterns within the routing (e.g. OUT0 of a CLB always
drives the F1 input of the CLB above it) and replace a
large series of routing resource sets with a single smaller
iterated series of calls. This would greatly aid the
generation of cores that can be parameterised according to
operand widths.

References

[1] Guccione, S.A. and Levi, D.: “Run-Time Parameterizable
Cores”, Field-Programmable Logic and Applications
(FPL99), pp 215-222, 1999

[2] Guccione, S.A., Levi, D. : “XBI: A java-based interface to
FPGA hardware,” in John Schewel, editor, Configurable
Computing: Technology and Applications, Proc. SPIE
3526, pp 97-102, Bellingham, WA, November 1998

[3] Luk, W, Guo, S., Shirazi, N., Zhuang, N. : “A framework
for developing parameterised FPGA libraries”, Field-
Programmable Logic: Smart Applications, New Paradigms
and Compilers (FPL96), pp 24-33, 1996

[4] Luk, W., McKeever, S.: “Pebble: A language for
parameterized and reconfigurable hardware design”, Field-
Programmable Logic: From FPGAs to Computing
Paradigm (FPL98), pp 9-18, 1998

[5] S. Gehring, S. Ludwig.: “The Trianus system and its
application to custom computing”, Field-Programmable
Logic: Smart Applications, New Paradigms and Compilers
(FPL96), pp 176-184, 1996

[6] Lechner, E., Guccione, S.A. : “The Java environment for
reconfigurable computing,” Field-Programmable Logic and
Applications (FPL97), pp 284-293, 1997

[7] Brebner, G. : “CHASTE: A hardware/software co-design
testbed for the Xilinx XC6200,” Proc. 4th Reconfigurable
Architecture Workshop, IT Press, Verlag, pp 16-23, 1997

[8] Brebner, G. : “An interactive datasheet for the Xilinx
XC6200,”, Field-Programmable Logic: From FPGAs to
Computing Paradigm (FPL98), pp 401-405, 1998

[9] Levi, D., Guccione, S.. “BoardScope: A debug tool for
reconfigurable systems”. in John Schewel, editor,
Configurable Computing: Technology and Applications,
Proc. SPIE 3526, pp 239-246, Bellingham, WA, November
1998. SPIE -- The International Society for Optical
Engineering.

[10] Brebner, G.:. “Automatic identification of swappable logic
units in XC6200 circuitry”, Field-Programmable Logic and
Applications (FPL97), pp 173-182, 1997

[11] Heron, J and Woods, R. ‘Accelerating run-time
reconfiguration on custom computing machines’, Advanced
Signal Processing Algorithms, Architectures and
Implementations VIII, invited paper, SPIE Int. Symp. On
Optical Science, Engineering and Instrumentation, July
1998, San Diego, USA

[12] Chapman, K.: “Constant Coefficient Multipliers for
XC4000E”, Xilinx App. note XAPP054.
http://www.xilinx.com/xapp/xapp054.pdf. December,
1996.

[13] Luk, W., Shirazi, N., Cheung, P.: “Compilation tools for
run-time reconfigurable designs”, IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM97), pp
56-65, 1997

[14] Brebner, G.: “Automatic identification of swappable logic
units in XC6200 circuitry,” Field-Programmable Logic and
Applications (FPL97), pp 173-182, 1997

