
Run-Time Parameterizable Cores

Steven A. Guccione and Delon Levi

Xilinx Inc.

2100 Logic Drive

San Jose, CA 95124 (USA)
Steven.Guccione@xilinx.com

Delon.Levi@xilinx.com

Abstract. As FPGAs have increased in density, the demand for pre-
de�ned intellectual property has risen. Rather than re-invent commonly

used circuitry, libraries of standard parts have become available from

a variety of sources. Currently, all of these o�erings are based on the
standard ASIC design ow and are used to produce �xed designs. This

paper discusses Run-Time Parameterizable or RTP Cores which are an

extension of the traditional static core model. Written in the Java (tm)
programming language, RTP Cores are created at run-time and may be

used to dynamically modify existing circuitry. In addition to providing

support for run-time recon�gurable computing, RTP Cores permit run-
time parameterization of designs. This adds exibility and portablilty

unavailable in existing design environments.

1 Introduction

In most FPGA designs, engineers make extensive use of preconstructed libraries.
Rather than implement an entire design in low-level detail, these library elements
or Cores are commonly used to build complex designs. These cores supply high
level building blocks which can greatly simplify the design task for users. While a
variety of core libraries have existed from both commercial vendors and indepen-
dent sources, the increase in density in FPGAs has led to an increasing demand
for cores. The complexity of these cores has also increased correspondingly.

The most basic type of core is a �xed core, which has a pre-de�ned size and
cannot be modi�ed by the designer. This type of core has been the basis of most
FPGA design tools for the past decade. These cores typically supply standard
functions familiar to board level designers, including components such as TTL
7400 series.

As larger cores have been added to libraries, the trend has been away from
�xed cores to parameterizable cores. Parameterizable cores permit the user to
enter information about the desired core, and a customized circuit conforming
to the information supplied by the user is constructed.

One example of a parameterizable core would be an adder circuit. When
requesting an adder core, a user could be asked to specify the bit width of the
adder. This permits any size adder to be generated by a user. With �xed cores,
the library would supply standard size adders, typically 4 bit, 8 bit and 16 bit



adders. The user would select the pre-constructed circuit which best �t the needs
of the circuit being designed.

Parameterization can extend beyond simple bit widths. Adders, for example,
can be parameterized to provide various speed versus area tradeo�s. The ability
to customize these cores is limited only by the skill of the core designer. With this
ability to select from a larger number of cores, circuits can be better tailored to
the particular design at hand, with less wasted circuitry and higher performance.

Recently, researchers and commercial vendors have focused attention on these
parameterizable core libraries [3] [4] [6]. While these core libraries increase ex-
ibility and provide better solutions to designers, their use is limited to what
information can be provided at the time the circuit is designed.

This paper discusses a substantially new type of parameterizable core circuit,
the Run-Time Parameterizable or RTP Core. This type of core is used exclu-
sively in a Run-Time Recon�gurable or RTR system, where FPGA logic and
routing are dynamically modi�ed at run-time. These RTP Cores permit circuits
to be constructed and instantiated at run-time, while the system is executing.
This permits a new degree of exibility in design, particularly in RTR systems.
Designs may now react to information supplied in real-time, either by system
software, user input or by real-time sensor data. This provides a high-level mech-
anism for performing true RTR using FPGAs. With this capability, systems can
be designed which can interact with real-time data and host software.

2 Run Time Parameterization

Unlike compile-time parameterization, designs which are run-time parameteriz-
able have an added degree of exibility. The ability to create or modify circuits
at run-time creates new design options that are unavailable in designs param-
eterized at compile-time. In general, RTP Cores provide a simple mechanism
for producing designs which can vary in functionality based on various types of
input. While this list is not exhaustive, some types of input and their use to
parameterize circuits is discussed below:

Command line: Using Command line parameters, a command-line ag, or

other forms of user input can be used to select a particular con�guration. This is
useful in applications where very similar circuits providing di�erent functionality
are supplied in a single RTR design. An example is an encode / decode circuit.
A command line ag may be passed to the RTR software to permit either an
encoder or a decoder circuit to be con�gured, depending on the desired mode of
use.

Device type: In addition to reacting to command line parameters, it is also
possible to parameterize circuits at run-time based on the actual Device type

being used. For instance, if a small device is being used, a smaller, perhaps less
accurate circut may be con�gured. If a larger device (or portion of a device)
is available, a larger, perhaps more accurate circuit may be con�gured. For in-
stance, in a DSP application, an 8-bit �lter may be con�gured in a small device,
where a 16 or even 32 bit instantiation may be used in a larger device. This



not only allows one single compiled design to be used on many di�erent sized
devices across a family, but allows functionality such as accuracy or speed to
change appropriately, depending on the hardware being used.

User input: Command line selection typically permits a simple con�gura-
tion choice to be made at the beginning of execution. It is also possible with
RTR to provide a user interface which permits circuit modi�cation at the user's
command.An example of User input con�guration would be an image processing
application which uses an FPGA to do coprocessing. A GUI which takes user
inputs for processing parameters such as gain, o�set, and coloring could be used
to directly generate circuit parameters. These parameters may then be used to
construct the RTP Cores used in the image processing circuit.

Real-time input:Where User input con�guration requires a human to man-
ually control RTR, it is also possible to query real-time data, typically from sen-
sors, to drive RTR without human intervention. This permits capabilities such
as adaptive digital �ltering, where �ltering is modi�ed depending on various
real-time system conditions.

Circuit state: Where User and Real-time input con�guration provide for
external control of RTR, it is also possible to query data within the currently
con�gured circuit, typically by reading registers from software. The system could
then use these values to perform RTR. While similar to using real-time inputs,
the ability to probe the internal state of the device permits the possibility of sim-
pler system integration. One example would be an internally con�gured counter
circuit which keeps track of an external event count. Probing the state of such
a counter permits software to react to internal values, and to use these internal
values to perform circuit parameterization in real-time.

These represent broad classes of input data which can be used to drive RTR
using RTP Cores. Using such data to construct circuit con�guration parameters,
RTP Cores can be instantiated and used to con�gure FPGAs at run-time. In
addition to producing smaller, faster circuits, this approach permits the con-
struction of circuits which would not be feasible using compile-time parameteri-
zation of circuits. Reacting to command line parameters, device type, user input,
real-time input and circuit state all provide capabilities for circuit designers far
beyond what is available using static circuit design tools such as schematic cap-
ture and hardware description languages.

3 The JBits System

Because RTP Cores are parameterizable at run-time, it is not practical to imple-
ment them using standard design tools. These tools, including schematic capture
and hardware description languages, were originally designed to produce �xed,
static circuits. Using these existing tools to support RTR and RTP Cores is
currently not possible.

For this reason, RTP Cores are implemented using the Xilinx JBits in-
terface [5]. This design environment is implemented completely in the Java
(tm) programming language and currently provides RTR support for the Xilinx



XC4000EX (tm) and XC4000XL (tm) series of FPGA devices. JBits provides
an Application Program Interface (API) into the device con�guration bitstream,
permitting logic and routing to be modi�ed at run-time.

It should be noted that JBits is based on earlier work on the Xilinx XC6200

(tm) recon�gurable device. This work was know as the Java Environemnt for

Recon�gurable Computing or JERC6K [7]. While a very small number of RTP
Cores were supplied with JERC6K, the emphasis was on other aspects of RTR.
Following the experience gained in development and use of JERC6K, JBits was
implemented and focus quickly moved from low-level to high-level design details.
This has led to more of an emphasis on cores and other support for high-level
design activities.

Fig. 1. The JBits system.

The JBits system views all devices in a given FPGA family as tiled arrays
of Con�gurable Logic Blocks or CLBs. Associated with each CLB tile is some

amount of routing. Partitioning the device in this way permits small sections of
the device to be programmed, and the programming to be replicated in loops
or implemented conditionally. This programming language support for repiti-
tion and conditionality is what provides the basic and necessary support for all
paramtereizable cores, but particularly for RTP Cores.

Using this device model and programming interface, RTP Cores are de�ned as
Java objects which can be constructed and then written as device con�guration
data. Because the device model is a simple two dimensional array of CLBs, the
only di�erence between various devices in a family is the size of the array. This
permits cores to be relocatable and device-independent. A JBits core used on
the smallest XC4000EX family part will also work, unmodi�ed, on the largest
XC4000EX family part. Of course, the size of a core may limit the devices with



which it can be used. A core whose smallest instantiation is 20 x 20 CLBs clearly
will never �t in a device which contains only 10 x 10 CLBs.

Finally, note that the details of the JBits interface are not discussed in detail
in this paper. Su�ce it to say that all device resources may be con�gured via
JBits. This capability is used to build Java objects which construct higher level
circuits which remove the need for the user to understand the low-level details
of JBits and the underlying device architecture. For more a more detailed de-
scription of JBits, see [5]. Note that this paper refers to the JBits software as
\XBI". This was the internal development name of JBits.

4 Stitcher Cores

While RTP Cores implemented using JBits permit fast, run-time parameteri-
zation of circuits, one crucial piece is still missing. It is easy to construct and
instantiate RTP Cores, but the issues of interconnecting these cores has until
now been avoided, even in previous RTR e�orts. Clearly, one possibility is using
a general purpose router such as the one used in traditional placement and rout-
ing tools. Such a router would have to be more intelligent than current routers
to keep track of the dynamically changing circuit within the device. In addition,
all RTR code, including cores, would have to keep the router informed in some
way of the resources being used. This system would be analogous to dynamic
memory allocation in software. Because the usage of memory is varying at run-
time, some mechanism, be it either an explicit relinquishing of resource, or some
form of run-time garbage collection, must be performed to keep track of used
and free resources.

While it is possible to implement a general-purpose router which works at
run-time, there are two immediately obvious problems with this approach. First,
indeterminate circuit generation times could be a problem for many systems,
particularly those with real time constraints. And since it is assumed that the
FPGA is being used as a coprocessor of some sort to o�-load work from the main
processor, it may be di�cult to justify re-loading the processor with the complex
task of performing routing. It is likely that any processor capable of performing
real-time FPGA routing would have little need for a high performance FPGA
coprocessor.

Finally, while router performance is an issue, completion is an even more
severe problem. What should a system do if the router fails to �nd a solution
within the given constraints? It is not likely that many systems would be able
to function with even the possibility of such a failure.

One possible solution is to de�ne a special type of RTP core called a Stitcher.
This core is the same as any other RTP core, except that it has no logic and
only modi�es routing resources.

The operation of a Stitcher Core is very simple. The Stitcher Core abstracts
away the underlying routing architecture in the same way that standard RTP
Cores abstract away the underlying logic architecture. Inputs of an RTP core
are connected in some structured fashion to the outputs of another RTP core.



/* Set up the JBits interface */

jbits = new JBits(deviceType);

/* Instanitate a 16-bit counter core at CLB(10,10) */

Counter counter = new Counter(16, 5);

counter.set(jbits, 10, 10);

/* Instanitate a 16-bit +7 constant adder core at CLB(10,11) */

ConstAdder constAdder = new ConstAdder(16, 7);

constAdder.set(jbits, 10, 11);

/* Stitch the counter and adder together */

Stitcher stitcher = new Stitcher(Stitcher.F1_IN, Stitcher.YQ_OUT, 16);

stitcher.set(jbits, 10, 11);

Fig. 2. A JBits RTP Core and Stitcher example.

The Stitcher must be aware of the geometry of the core inputs and outputs in
question, but this has not been a problem. All cores in the library have so far
fallen into a small number of input and output styles, the largest variation being
the stride relative to the CLB array. In any case, if other more unusual RTP
Cores are built in the future, it should be no problem to write new Stitcher
Cores which work with these cores.

Using an RTP Stitcher Core is very simple. First, the two cores to be stitched
are instantiated using their Java constructors. Then they are written to partic-
ular locations in the device using the JBits set() function. Once the RTP Cores
are in place, the Stitcher may be used to connect them. The Stitcher is also
instantiated, then written at the juncture of the two cores, again using the JBits
set() function. This connects the cores.

Figure 2 shows actual JBits code to which contains a 16-bit counter (which
is initialized to a value of \5") and a 16-bit constant adder which adds \7" to
its input. The Stitcher core in this code connects the YQ CLB outputs of the
counter to the F1 LUT inputs of the adder. Note that since the stitcher has no
width, it is set() to the same location as the constant adder. Also note that the
Stitcher Core is treated just like any other RTP core.

While Stitcher Cores typically contain only routing resources, they are often
represented as one-dimensional cores with no width. This indicates the absence
of logic resources, and permits automatic placement and relative placement soft-
ware to function in the presence of Stitchers. Figure 3 shows a diagram of such
a Stitcher Core. However, it should be mentioned that it is not necessary that
cores be abutted and Stitchers have zero width. Because JBits is a software so-
lution, it is possible to de�ne stitchers which operate in any mode and connect
arbitrary cores at arbitrary locations. In this sense, Stitchers may be viewed as
small, special purpose auto-routers. This permits them to execute very quickly,
with approximately one interconnect performed per line of Java code. Perhaps



Fig. 3. A Stitcher Core.

more importantly, RTP Stitcher Cores guarantee completion of routing.

5 Conclusions

Run-Time Parameterizable Cores or RTP Cores are high-level circuit compo-
nents which can be con�gured at run-time. Unlike other existing systems which
supply �xed circuit parameters at compile time, new levels of exibility are possi-
ble using RTP Cores. Circuits which adapt based on user input, real-time input,
the device being used or even internal FPGA state are possible with RTP Cores.

RTP Cores are currently implemented using the in the Xilinx JBits. This
system currently supports run-time recon�guration on the Xilinx XC4000EX
and XC4000XL families of devices. Using this RTP core based design approach,
fairly complex circuits using Run-Time Recon�guration or RTR can be built.

In addition, the introduction of Stitcher cores to perform special-purpose
routing tasks supplies the �nal piece of the design environment. While JBits and
RTP cores have been in use by our group for a little over a year, the results have
been very positive. A small handful of demonstration applications have been
constructed and run on actual hardware. In most cases, the applications have
been run on di�erent hardware platforms with di�erent FPGA devices, without
re-compilation.

References

1. Gordon Brebner. The swappable logic unit: A paradigm for virtual hardware. In

Kenneth L. Pocek and Je�rey Arnold, editors, IEEE Symposium on FPGAs for



Custom Computing Machines, pages 77{86, Los Alamitos, CA, April 1997. IEEE
Computer Society Press.

2. Gordon Brebner. Circlets: Circuits as applets. In Kenneth L. Pocek and Je�rey

Arnold, editors, IEEE Symposium on FPGAs for Custom Computing Machines,
pages 300{301, Los Alamitos, CA, April 1998. IEEE Computer Society Press.

3. Michael Chu, Nicholas Weaver, Kolja Sulimma, Andre DeHon, and John

Wawrzynek. Object oriented circuit generators in Java. In Kenneth L. Pocek and
Je�rey Arnold, editors, IEEE Symposium on FPGAs for Custom Computing Ma-

chines, Los Alamitos, CA, April 1998. IEEE Computer Society Press.

4. PAM-Blox: High Performancs FPGA Design for Adaptive Computing. Oskar
mencer and martin morf and michael j. ynn. In Kenneth L. Pocek and Je�rey

Arnold, editors, IEEE Symposium on FPGAs for Custom Computing Machines,

Los Alamitos, CA, April 1998. IEEE Computer Society Press.
5. Steven A. Guccione and Delon Levi. XBI: A Java-based interface to FPGA hard-

ware. In John Schewel, editor, Con�gurable Computing Technology and its use in

High Performance Computing, DSP and Systems Engineering, Proc. SPIE Photon-

ics East, Bellingham, WA, November 1998. SPIE { The International Society for

Optical Engineering.

6. James Hwang, Cameron Patterson, S. Mohan, Eric Dellinger, Sujoy Mitra, and
Ralph Wittig. Generating layouts for self-implementing modules. In John Schewel,

editor, Con�gurable Computing Technology and its use in High Performance Com-

puting, DSP and Systems Engineering, Proc. SPIE Photonics East, Bellingham,
WA, November 1998. SPIE { The International Society for Optical Engineering.

7. Eric Lechner and Steven A. Guccione. The Java environment for recon�gurable

computing. In Wayne Luk and Peter Y. K. Cheung, editors, Proceedings of the 7th
International Workshop on Field-Programmable Logic and Applications, FPL 1997.

Lecture Notes in Computer Science 1304, pages 284{293. Springer-Verlag, Berlin,

September 1997.

This article was processed using the LATEX macro package with LLNCS style


