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ABSTRACT

Until recently FPGAs have been used almost exclusively to implement static circuits. Because FPGAs can be reprogrammed
at any time, even in-system at run-time, interest in exploiting this mode of operation has steadily increased. One barrier to
widespread use of Run-Time Reconfiguration (RTR) has been the lack of design tools. While toolsHitdhase begun to

provide basic support for design entry, traditional verification tools such as simulators have been lacking. This paper discusses
VirtexDS a device level simulator for the Xilinx Virté%™ series. The approach taken ytexDSis to simulate at the device

level, providing an interface which operates much like actual hardware. This approach not only supports simulation for run-time
reconfiguration, but also interfaces easily to existing tools. In addition, this low-level simulation approach can provide higher
performance than higher-level approaches to simulation.

1. INTRODUCTION

Run-Time Reconfiguration (RTR) tool flows have recently become available with the advent of Application Programming
Interfaces (APIs) likelBits*™) .1 Tools such agBitsallow applications to modify and download configuration bitstreams on
the fly, permitting a new level of flexibility in hardware design.

Unfortunately, existing circuit simulators are coupled to schematic and HDL design tools and provide no support for RTR.
To address this gap in existing tools tffietex Device Simulator (VirtexD3)as been designed and implemented as part of the
JBitstool suite. VirtexDS operates at the device level and provides a software model of the entire Virtex family of FPGAs. In
addition to providing support for RTR, this device level simulation approach has other benefits.

First, because the actual FPGA device is being simulated, this approach provides a level of simulation accuracy difficult
to attain in other implementations. A device simulator also provides a “safe” environment for testing and debugging of RTR
applications. lllegal configurations that would damage actual hardware can be caught and identified. Lastly, because the
simulator uses only configuration bitstream data as input, designs are optimized and pre-packed into look-up tables (LUTS).
This provides a performance boost which maketexDSa high-performance alternative to traditional simulation.

At the system level, the device simulator interface is identical to that of actual hardware. This permits éBigsitapls
and applications, including tHgoardScop€é™ debug took to interface directly to the simulator with no modifications. This
unified hardware / simulator interface simplifies user interaction and provides a powerful debug and test environment.

In Section 2 and 3 we will provide background informationJ@itsand traditional optimization techniques using high level
simulators. In Section 4 we will discuss the device simulator approach and talk about its advantages over high level simulation
in addition to how optimization techniques used for high level simulation can also be used for device level. Finally in Section 5
we will give information pertaining to our implementation of the device level simulation and we will discuss effects of FPGA
architecture designs and conclusions in Sections 6 and 7.
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2. JBITS BACKGROUND

JBitsis a set of Javd™ classes which provide an Application Program Interface (API) into the configuration bitstream for
devices in the Xilinx Virtex family. This interface permits all configurable resources in the device to be individually programmed
directly under software control. This provides software support for a set of new capabilities previously unavailable in Xilinx
devices.

Using theJBitsinterface, software can be written which produces circuits, and provides support for dynamic reconfiguration
of these circuits. In addition, because the entire system is implemented in the Java programming language, any existing Java
development environment may be used with JBits API. This provides a simple alternative to traditional design tools.

Figure 1 provides a general overview of all the different components iR@its tool suite. The components shown
include the RTPCore library of predesigned cores JReuteautomatic router API, thBoardScopelebug tool, and thé@Bits
configuration bitstream interface. TH&WIF Xilinx hardware interface APl shown at the bottom of Figure 1 is used to access
both actual Virtex hardware and the device level simulator.
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Figure 1. JBits Overview Diagram.

3. TRADITIONAL HIGH-LEVEL SIMULATORS

Currently, most commercially available circuit simulation environments are closely tied to circuit development environments.
In general, these tools provide simulations for designs entered using traditional schematic capture or Hardware Description
Language (HDL) input. Because these input specifications only support fixed circuits, the simulators used with these design
entry tools as they exist today are generally not suitable for modeling RTR.

Figure 2 shows an overview of how traditional HDL type high level simulators fit into the design flow. There are many
vendor supplied design entry tools and many vendor supplied simulators to choose from. This increases the complexity of the
M1/M2 Place and Route software, for it needs to communicate with many different vendor tools. In the traditional high-level
simulator flow all of the simulation takes place up-stream of bitstream generation. If errors are introduced during the generation
of the bitstream, these errors can not be caught by the simulator. Also since traditional simulators are designed to simulate
static circuits, RTR type designs can not be simulated. The inability to simulate RTR designs provided the original impetus for
designing th&/irtexDSdevice level simulator.

Circuit simulators can be grouped into two general classes: event driven and cycle based. Event driven simulators are more
common and provide circuit timing and delay information. Whenever a signal state changes, an é@ventialgenerated.
Due to circuit delays, this change of state event will take place at some point in the future. The event is typically placed in an
event queuand sorted by time. Events are removed from the queues in order and processed. Typically, processing propagates
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Figure 2. Traditional High-Level Simulator Overview.

the event through the circuit and generates additional events which are added to the queue. This approach provides accurate
timing information, but can be somewhat slow.

By contrast, cycle based simulation was designed for speed but only provides a functional simulation, not timing behavior.
In a cycle-based simulator, asynchronous portions of a circuit are simulated until some state element, typically a flip-flop, is
encountered. On a clock signal, the next-state values generated by the circuit are propagated to the output of the state elements.
These new values are then used to produce the subsequent set of next-state values for the state elements. While this approacl
tends to be faster than event-based simulators, timing behavior is not taken into account and asynchronous designs cannot be
simulated at all.

In addition, circuit simulators generally provide more information than the typical one / zero state found in actual hardware.
Most modern simulators use 9 state logic from tREE 1164 standard. This has been popularized with its widespread
acceptance as a standard VHDL library component. In addition, strength modifiers added to these logic values create a large
number of possible states and complicated sets of resolution functions required during simulation. These multiple states and
resolution functions can considerably complicate the simulator code and reduce performance. However, they are required to
accurately represent real world circuit possibilities and unknown initializations.

For performance reasons, there has been a resurgence of simpler two state sitiulafiis is a natural choice for
VirtexDS since the FPGA device always initializes to a known state and changes to circuit parameters such as drive strength
are not available to designers.

4. AN FPGA DEVICE LEVEL SIMULATOR

Device level simulation is a new approach to FPGA design simulation and verification. This type of simulation not only
provides the ability to simulate RTR designs in a safe environment, but has other inherent advantages over other simulation
approaches. Figure 3 shows a high level overview of device level simulation. Device level simulation can take direct place of
the actual hardware device and works directly from the configuration bitstream. An added benefit of this approach is that the
simulator also becomes tool independent. Any design tool which generates a configuration bitstream for a Virtex device can be
simulated with this approach.

The approach to simulation is relatively simple. Logic utilization and connectivity information is extracted from the con-
figuration bitstream usingBits This information is all that is necessary to accurately simulate a design. FPGA devices have
the additional benefit that the simulated structures are regular, simple, and small in number. In general, the simulation model
consists of interconnected 4-input look-up tables (LUTs) and flip-flops. These types of structures greatly simplify the simulator
design, initialization, and memory requirements.
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Figure 3. Device Level Simulator Overview.

In addition, the signals in an FPGA device all have a known initialization state and drive strengths are uniform. This
eliminates the need for the multiple states of other simulaiéreexDSuses two states: one and zero. This not only simplifies
the design and increases performance, but it give a more uniform view of the design. The outgakBiSshould be identical
to that of the actual FPGA hardware.

Finally, the basic structure of an FPGA, the Look Up Table (LUT), provides for additional speed and efficiency optimizations
over high level simulators. LUTs represent multi-gate functions, providing a condensed version of the original gate level design.
This “packed” form of the gate level information generates less overhead during simulation. For example, in an event driven
simulator, 20 individual gates will generate 20 times the number of events as the same circuit packed into a LUT. Each of these
events will also carry timing information which does not correspond to any physical feature of the device. The gates do not
actually exist in the final circuit; they have already been packed into LUTSs.

In the VirtexDSimplementation, the interface used is exactly the same interface used to talk with Virtex hardware devices.
As a result, final state information is the only information of interest. Intermediate state information can safely be ignored.
This essentially produces a functional simulator which can ignore signal glitches and intermediate states while still providing
the capability to detect signal timing violations.

If required, a device level simulator can also provide a higher level of timing fidelity than can be obtained using high level
back annotated simulations. A static timing analysis can be performed in addition to the more in depth event driven simulation
that displays timing information and every glitch in a signal. All of this can be achieved directly with the device simulator rather
than using different tools to annotate and simulate timing information. The timing information for the device level simulator
will also be based on actual routing delays of the final circuit implementation rather than hypothetical timing estimates.

5. THE VIRTEXDS IMPLEMENTATION

The primary goal in implementing théirtexDSdevice simulator was to prove some of the concepts of device level FPGA
simulation. Since many of the ideas were untried, a path that would consume minimal engineering resources was charted
for the first implementation. The goal was to keep the code size as small and simple as possible. Performance was always
secondary to producing a working prototype.

Even with these goals, the implementation of YirkexDSdevice simulator was surprisingly fast. One reason for the small
size and rapid development was that existing software and specifications frdBitimol suite were heavily leveraged.

Of course, all of the configuration bitstream information was decoded and interpreted usiiit&?P|. But other parts
of JBitswere also used. For instance, rather than define a new interface to the simulator, the decision was made early to provide
an XHWIF portable hardware interface to the simulator. This would allow standard tools such BsattScoperaphical



debugger to provide a solid, familiar user interface. In addition, the uxglg¥IF also allowed existindBits applications to
use the simulator directly without rework or recompilation.

As an example, one application experimenting viitolvable Hardwarg was able to make excellent use of thBIWIF
simulator interface. Originally this application ran on a Virtex-based PCI board. Runs of this application would often take
days, tying up valuable resources. Once the simulator became functional, multiple runs of this application were spawned off in
parallel on local workstations. Not only were results generated much faster, but the hardware was freed up for other developers.

The next piece ofBits code to be leveraged in this effort was the databasdRmute the run-time router AP1. This
database provided connectivity information for the Virtex family of devices. This was used to implemeracrewhich
was used to build up the interconnection graph of the bitstream. This tracing was done only when new bitstream information
was acquired, either through loading a completely new design or via reconfiguration. This process, however, turned out to
be relatively time-consuming on start-up. A variant of the original tracer was eventually implemented which uses a greedy
algorithm to trace only objects which generate events in the simulator. This amortizes the costs of tracing routes over time
instead of forcing the user to wait for tracing at initialization.
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Figure 4. A simplified extracted circuit graph.

As the routing interconnecting individual LUTs and flip flops is traced, an internal representation of the circuit is built.
This representation is essentially a graph containing interconnected LUTs and flip flops. A simplified diagram of an extracted
circuit is shown in Figure 4. The delay of each route is calculated once and stored with the associated interconnection arc. This
provides very accurate timing information without having to actually simulate the details of the FPGA routing architecture.
This dynamically constructed graph is the FPGA circuit representation used to drive the simulation.

Table 1. VirtexDS Numbers

Description Number

Lines of Code 2351

Design Time 3 Man Months

Events Per Second 126,000 to 292,000

Tracer Sinks/Second 2,800to 17,000

Memory Requirements 22 MB on XCV800 (84% LUT’s, 94% FF's)

Test Machine 450 MHZ Pentium I, 384 MB RAM

Java VM Sun’s JDK1.2.2. Note: using Sun’s HotSpot VM improves the

above numbers on average by 75%

The reporting of simulation results is also simplified. BecauseXtH®VIF interface only requires the end result of the
simulation cycles, design modifications to the event queue were madeVifiéDSevent queue is usually not sorted. This
may seem counterintuitive, but results in simplification of the code in addition to reductions in computation. By not sorting
the queue, not only can the expensive sorting computation be skipped, but the latest events can be processed first, ignoring the



“glitches” generated by earlier events on a signal. Tests showed that approximately 37% of the events generated were able to
be ignored in this manner.

Finally, in order to deal with asynchronous circuit behavior, an event queue sorting routine is provided as an option. This is
enabled only when asynchronous clocks exist in an FPGA bitstream. This will reduce the speed and efficiency of the simulator,
but will permit these types of circuits to be accurately simulated.

It should be noted that while cycle based simulation seems appropriate for this type of model, a variant on the event-based
model is used in/irtexDS This approach is used not only to support simulation of asynchronous circuits, but also to support
simulation with timing data. Because the circuit being simulated represents the physical realization in the FPGA, more accurate
circuit timing simulation can be performed usiugtexDS

Table 1 provides some quantifiable data relating toMineexDSdevice simulator. These numbers varied widely in some
cases as a result of the number of actual events processed per cycle. Since there exists overhead with calling the event queue
the more events processed per cycle, the better the average rate. Similar behavior exists with the tracer where sink to source
ratios have a large effect on the average tracer sinks per second rates. Overall, the memory consirtezD8snd the speed
of simulation are quite notable. Comparable commercial simulators use approximately an order of magnitude more memory
and can be as much as two orders of magnitude sléwer.

6. FUTURE WORK

The first version oVirtexDSturned out to be smaller and faster than even the most optimistic estimates. It has quickly become
the preferred vehicle for development of designs and has all but eliminated our reliance on physical hardware. While the results
are encouraging, development¥dintexDSis continuing.

The first planned enhancementiotexDSis to support the entire Virtex device. Currently the Virtex block RAM and IOBs
are not supported. In addition, some method of driving the external IO ports in the device simulator would be useful in the
testing of complete designs.

The current simulator is event based, but actual numbers for the various speed grades of Virtex devices are not available. It
is expected that the timing data from the mainstream M1 / M2 placement and routing tools can be leveraged to supply this data
to VirtexDS As with other aspects ofirtexDS relatively little timing data will be required. We predict that values for LUT
delay, flip flop delay and delays for single, hex and long lines will be the bulk of the data required. Note that the current version
of the simulator assumes unit delay. The addition of these values will not affect performance.

Finally, we would like to build device simulators for other Xilinx devices. In particular, producing such tools before silicon
is available for new families would help in the development and debug of not only the mainstream tools, but also of intellectual
property and designs. Ultimately, we would like to 08gexDSas a tool for experimenting with FPGA architectures. Archi-
tectural variants, or even completely new architectures could be implemented in the stiytexddSand tested and exercised
without having to resort to large, expensive design tools or produce silicon.

7. CONCLUSIONS

VirtexDS provides simulation support for run-time reconfiguration, which was actually the ultimate goal of this work. In addi-
tion, device level simulation of FPGAs provides many inherent advantages over traditional simulation. First, device simulation
offers very high performance over existing techniques. This performance is achieved through simulating a simple, regular array
or logic already packed into LUTs and the ability to perform accurate simulations using only two states.

Somewhat surprisingly, accuracy is also enhanced. The circuit being simulated is the actual FPGA implementation, not
some gate-level representation. This allows more realistic and accurate timing information to be produced by the simulator.
Finally, the two state nature of the device simulator provides data that should be identical that that of actual hardware. Complex
set up and initialization of the simulator are not required; they are a built in feature of the FPGA device.

Aside from the inherent advantages of this approach over traditional simulsiitexDSwas able to provide additional
benefits. First, leveraging existing code from ffgitstoolset greatly simplified the design and dramatically reduced the code
size. All devices in the Virtex family are supported in under 2500 lines of Java code. And the use of existing interfaces,
particularly XHWIF, allowed existing user interfaces to be used and permitted existing applications to run unmodified and
without recompilation orvirtexDS
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