
WebScope: A Circuit Debug Tool

Steven A. Guccione

Xilinx Inc.

2100 Logic Drive

San Jose, CA 95124 (USA)

Steven.Guccione@xilinx.com

Abstract. WebScope is an interactive graphical tool used to probe and

stimulate circuits in recon�gurable logic devices. WebScope is imple-

mented using the Java programming language and features a graphical

point and click user interface, remote access to hardware and a limited

symbolic debug capability.

1 Introduction

Systems based on recon�gurable logic have been increasing in popularity. While

various hardware platforms have been built [4] software support for these sys-

tems has lagged. In the area of software support, the emphasis has been almost

exclusively on design tools. By contrast, little has been reported on debug envi-

ronments for these systems.

Among the debug tools mentioned in the literature are the systolic parallel

C (spC) debugger for the Enable++ system [6], the KRONO and ShowRB de-

bugger for the PAM system [2], the T2 debugger for the Splash 2 system [1],

the Hardware Promela Debugger (HPDB) for the PROMELA system [7], the

DISC debugger (DDB) for the DISC system [3] and the CALLAS debugger for

CHAMELON [5].

While this is a substantial number of systems, none are discussed in detail,

nor are supporting documents on such debug environments referenced.

WebScope attempts to �ll this gap in the software development environment

for recon�gurable logic based systems. WebScope provides a graphical, interac-

tive interface to aid in the debugging of designs. While it is tempting to refer

to WebScope as a debugger, it actually interfaces to the system at the hardware

level and provides no direct support for software-style debugging.

In this respectWebScope more closely resembles In-Circuit Emulators (ICEes)

popular in microprocessor development environments. While this system oper-

ates primarily at the hardware level, this permits WebScope to operate inde-

pendently of other design tools or software packages. This also enhances the

portability of the tool.

2 The System Architecture

WebScope is implemented in the Java programming language. Its implementa-

tion permits WebScope to run on a variety of hosts, from PCs to workstations,

using the same small set of �les. Additionally,WebScope may be run using local

hardware, or remotely using hardware on another host. This is useful in situa-

tions where several users wish to share a board, or in cases where physical access

to the hardware is not possible. To operate WebScope remotely, it is necessary to

run a network server. This server negotiates network connections and provides

the interface from the network to the physical hardware.

Finally,WebScope may be run as either a standalone application using a Java

interpreter, or as an applet running from a Web browser such as Netscape or the

Microsoft Internet Explorer.

Fig. 1. The WebScope remote server.

The server supplied with WebScope is called WsServer. Like WebScope itself,

this is a Java application. Figure 1 shows the server interface. All connections

and disconnections to the hardware are logged, both to a window on the server

and to a �le. The Tracing option, when turned on, displays detailed information

about the operations being performed remotely by WebScope.

Target
Hardware

WebScope

Pci6200

Target
Hardware

WebScope
WsServer

Pci6200N Pci6200

(TCP/IP)

Fig. 2. Local and remote access to the target hardware.

Figure 2 shows the system architecture of WebScope. In this diagram, the

local and remote access modes are illustrated. All access to the hardware oc-

curs through a well de�ned interface. Currently, WebScope operates with the

XC6200DS [9] hardware but is designed to port easily to other systems using

the XC6200 device [8]. The Pci6200 interface is used in both modes to commu-

nicate directly with the hardware.

In the networked version of this interface, Pci6200N provides the message

passing interface to WsServer, the remote server. Note that in turn, the server

uses the same Pci6200 class as the direct connection mode to communicate with

the hardware.

3 The Command Panel

The primary control provided by WebScope is via the row of buttons across the

top of the display. When WebScope is initialized, only the Connect button is

enabled. Only after successfully connecting to the target hardware will the other

command buttons become active.

The next button, disconnect, is used to terminate the connection with the

target hardware. Once WebScope is disconnected from the hardware, all func-

tions, except for the connect button, are disabled. Note that the state of the

hardware remains unchanged even after Disconnecting from the target. Re-

connecting will resume the session where it was left o�.

The reset button is used to reset the hardware to its default state. The step

button is used to advance the state of the system. This stepping sends a single

clock pulse to the hardware. In addition, symbol table information is accessed.

This is discussed in more detail in the section on the symbol table below.

The reload button is used to re-read all of the data from the target and

re-display the result. This is particularly useful when some external software has

modi�ed the state of the hardware.

The display button is used to toggle WebScope's primary display. The soft-

ware architecture for the WebScope displays is exible and permits custom dis-

plays to be easily added. Currently, there are three displays. These are:

{ Graphical display: The array of cells (default)

{ Symbolic display: The symbol table

{ Waveform display: Strip chart style traces of the symbol table variables

These displays are discussed in more detail in the sections below.

Finally, the �le button is used to load �les into the WebScope. When this

button is clicked, a dialog box requesting a �le name is popped up. The type

of �le to be downloaded is selected by the buttons in the display. Currently,

XC6200 CAL design �les and SYM symbol �les can be downloaded.

4 The Cell Display

When WebScope is initialized, the default display is the graphical display. For

the XC6200, this display consists of a grid of 64 x 64 squares, representing the

Fig. 3. The WebScope main display.

state of the logic cells in the XC6200. A green square represents a cell with a

logic `1' output; a red square represents a logic `0'. The display in Figure 3 shows

a linear cellular automata demonstration circuit. The unique \triangle" pattern

produced by such automata is visible on the display.

The cell array is surrounded on its four sides by bars. The bar to the left

of the cells represents the Map register. This register determines which cells in

the XC6200 are used during state accesses. Black cells indicate bits masked o�

by the Map Register, while white cells indicate enabled bits. Grey cells indicate

bits that are enabled by the Map Register, but will not appear on the external

bus, due to the current bus width setting. The bus width in Figure 3 is set to

eight bits.

On the top of the cell array is the Column Wildcard register. This register

determines which columns of the array are accessed during con�guration. This

permits multiple columns in the array to be written to simultaneously. Similarly,

the Row Wildcard register is displayed as a bar on the right side of the array.

Clicking on either wildcard register bar causes the value of the register to be

printed in the Status window in the bottom portion of the display.

Below the cell array is a bar used to point to a given column in the array.

Clicking on this bar highlights a column of cells in the array. Cells selected by the

Map register are highlighted to help indicate their involvement in data accesses.

Fig. 4. The cell con�guration status box.

Finally, clicking on cells in the array return their con�guration value. This is

displayed in the status panel at the lower right portion of the display. Note that

this cell con�guration panel has two modes. One displays textual information,

the other displays a graphical representation of the circuit in the selected cell.

Clicking on the status panel toggles from one type of display to the other.

Figure 4 shows the two modes for the cell con�guration display. The graphical

representation gives the four outputs of the cell (north, south, east and west),

plus the extra \magic" output to the south. The three inputs to the primary cell

multiplexer are also shown. In the textual display, the complete cell con�guration

is printed. This display is most useful to those intimately familiar with the

XC6200 cell.

5 The Symbolic Display

The second display in WebScope is the symbolic display. This display treats

groups of cells in a column as a multi-bit variable and permits software-like

symbolic access to the XC6200 cells. Figure 5 shows the symbolic display used

by the linear cellular automata demonstration circuit.

The variables are de�ned by the name, which is a symbolic name for the vari-

able, a column, which indicates which column of cells in the XC6200 is accessed,

and a 64-bit bit pattern, speci�ed by theMap (high) andMap (low) �elds. These

give the rows of the cells which combine to make the variable. Finally, the Value

�eld displays the current value of the variable.

Fig. 5. The symbolic display.

The symbol �le format for WebScope is simply an ASCII text �le containing

the �elds in the display, with an added �eld to indicate if the variable is a read

or a write variable. Read variables are indicated by an \R", write variables by a

\W".Write variables take a �nal parameter, the value to be written. This is only

an initial value. It may be modi�ed interactively from withinWebScope. Figure 6

gives an example of a symbol �le. Note that text following a hash character (#)

are treated as comments and ignored.

#

Symbol file for WebScope

(for LCA demo)

#

Name Col Map_high Map_low R/W Value

#----- --- -------- -------- --- -----

clock 3 0xffffffff 0xffffff7f W 0

clock 3 0xffffffff 0xffffff7f W 1

random 5 0xffffffff 0x000000ff R

Fig. 6. The SYM �le format.

On each step command, these variables are read or written in sequence,

thus probing and stimulating the circuit. Note that in the example above, the

same variable, clock is referenced twice, each time as a writable variable. This

technique is used to produce a software-driven clock pulse on each step. Because

the symbol table entries are read/written in the order in which they are listed,

the cell at location (3,7) will be set to '0', then to '1'. This is used to clock the

circuit in a software controlled manner.

6 The Waveform Display

The waveform display draws strip chart diagrams for the variables in the symbol

table. This permits the history of the variable over time to be viewed. This

is not only useful for spotting transient irregularities in data, but for Digital

Signal Processing (DSP) applications as well. This display may also be favored

by hardware engineers and others who are more comfortable with the digital

waveform displays found in circuit simulators.

Fig. 7. The trace display.

As with the Symbolic Display, the Waveform Display is driven by the values

in the symbol table. The example in Figure 7 shows the traces for the variables

in symbol table in Figure 5. The value of the variable random contains bits

in column 5, which is data produced by the circuit driving the linear cellular

automata. These values are pseudorandom, as is indicated by the display.

7 The Command Line Interface

Finally, at the bottom of the screen is a command line interface. this interface

permits complete access to the hardware. While not the preferred mode of op-

eration, this interface is retained as legacy code from the original text-based

interface to the XC6200DS hardware. This interface is still favored by some

members of the design team.

On-line help is also available from the command line. This gives more detailed

descriptions of the available commands and their syntax.

8 Conclusions

Perhaps just as signi�cant as the tool itself is the process by which the software

was developed. The original design contained a core functionality which simply

displayed the state of cells in the XC6200. As the use of the tool increased, new

features were requested and rapidly added. It is a testament to the power and

exibility of the Java programming language and support libraries that this tool

was able to be developed in such a manner in less than 6 man months.

In addition, the number of bugs was surprisingly low. This is not so much at-

tributed to the skill of the programmer as to the extensive compile and run-time

checking in Java. Most programming errors were identi�ed quickly and repaired.

Finally, the object oriented nature of the language enabled new functionality to

be smoothly integrated into the existing body of code. Seldom was it necessary

to modify existing code objects to add new functionality.

WebScope represents a new level of support for circuit and system devel-

opment using recon�gurable logic. A powerful interactive interface to recon�g-

urable logic designs has already proven to be helpful in �nding design errors at

all levels of the system. It has been used to alternatively debug user designs, the

development tools, system level hardware and even the silicon itself.

References

1. Je�rey M. Arnold. The splash 2 software environment. In Duncan A. Buell and

Kenneth L. Pocek, editors, IEEE Workshop on FPGAs for Custom Computing Ma-

chines, pages 88{101, Los Alamitos, CA, April 1993. IEEE Computer Society Press.

2. Patrice Bertin and Herv�e Toutai. PAM programming environments: Practice and

experience. In Duncan A. Buell and Kenneth L. Pocek, editors, IEEE Workshop on

FPGAs for Custom Computing Machines, pages 133{138, Los Alamitos, CA, April

1994. IEEE Computer Society Press.

3. David A. Clark and Brad L. Hutchings. Supporting FPGA microprocessors through

retargetable software tools. In Kenneth L. Pocek and Je�rey Arnold, editors, IEEE

Symposium on FPGAs for Custom Computing Machines, pages 195{203, Los Alami-

tos, CA, April 1996. IEEE Computer Society Press.

4. Steven A. Guccione. List of FPGA-based computing machines. World Wide Web

page http://www.io.com/~guccione/HW list.html, 1997.

5. Beat Heeb and Cuno P�ster. Chamelon: A workstation of a di�erent colour. In

Herbert Gr�unbacher and Reiner W. Hartenstein, editors, Field-Programmable Gate

Arrays: Architectures and Tools for Rapid Prototyping, pages 152{161, 1992. Pro-

ceedings of the 2nd International Workshop on Field-Programmable Logic and Ap-

plications, FPL 95. Lecture Notes in Computer Science 705.

6. H. H�ogl, A. Kugel, J. Ludvig, R. Manner, K. H. No�z, and R. Zoz. Enable++:

A second generation FPGA processor. In Peter Athanas and Kenneth L. Pocek,

editors, IEEE Symposium on FPGAs for Custom Computing Machines, pages 45{

53, Los Alamitos, CA, April 1995. IEEE Computer Society Press.

7. Alan Wenban and Geo�rey Brown. A software development system for FPGA-

based data acquisition systems. In Kenneth L. Pocek and Je�rey Arnold, editors,

IEEE Symposium on FPGAs for Custom Computing Machines, pages 28{37, Los

Alamitos, CA, April 1996. IEEE Computer Society Press.

8. Xilinx, Inc. The Programmable Logic Data Book, 1996.

9. Xilinx, Inc. XC6200 Development System, 1997.

This article was processed using the LATEX macro package with LLNCS style

