
XVPI: A Portable Hardware / Software Interface for Virtex

Prasanna Sundararajan and Steven A. Guccione

Xilinx Inc.
2100 Logic Drive, San Jose, CA 95124 (USA)

ABSTRACT

XVPI, the Xilinx Virtex Portable Interface, is a hardware / software interface and speci�cation to assist in the design

and implementation of Xilinx Virtex(tm) based systems. XVPI speci�es a software accessible register to be de�ned

in the hardware. This register contains all of the control and data signals necessary to drive the Virtex device. The

software supplied with XVPI uses this register to read and write control and data signals to perform various device

level functions. These functions combine to produce an Application Program Interface (API) which provides access

to the Virtex device from software. The XVPI API supports all of the device level operations including partial

con�guration download, partial con�guration readback, clock control and reset. Once the system is operational,

designers may replace the software routines in the XVPI API with hardware assisted routines. This increases the

system performance incrementally, without a�ecting the functionality. Though speci�ed for the Virtex based system,

this technique to perform the device level functions from software can be applied to any FPGA device. Additionally,

XVPI is also supplied with an interface supporting Xilinx's JBits toolkit. Once XVPI is implemented, JBits and its

associated applications, including the BoardScope debug tool, are fully operational on that Virtex based system.

Keywords: Recon�gurable systems, FPGA, Hardware / software co-design.

1. INTRODUCTION

In the past, supplying a con�guration data to an FPGAs device has been relatively simple. The con�guration data,

or bitstream was typically stored in some form of serial, non-volatile memory. This data was loaded into the FPGA

at start-up with little or no additional hardware or software support. While this approach is still available, it is

a very low performance alternative and ignores many of the powerful features of newer devices such as the Xilinx

Virtex(tm) series.

While older families of Xilinx FPGA devices o�ered bit-serial con�guration interfaces operating at approximately

one MHz, The Xilinx Virtex series of FPGA devices uses an eight bit parallel port capable of speeds of as much as 80

MHz. This interface, known as the SelectMap(tm) port, provides over �ve hundred times the bandwidth of the older

families of devices. And in addition to simple con�guration download, the SelectMap port also provides support for

partial recon�guration, readback, partial readback and several control functions including reset5.1

While the SelectMap interface provides many useful capabilities for FPGA design, debug and run-time function-

ality, it is substantially more complex than older interfaces. This new level of functionality requires more complex

hardware interfacing and additional software to make use of these features. This has placed an additional burden

on the hardware designer, adding new and somewhat unfamiliar interfacing tasks to FPGA designs. Additionally,

because many of these features are used in modes such as debug, they are often ignored by hardware designers.

With this in mind XVPI, the Xilinx Virtex Portable Interface, provides a complete set of hardware design

speci�cations and software which should permit designers to immediately take advantage of not only the basic

functionality of the new Virtex SelectMap interface, but also of existing software such as JBits and its associated

design and debug tools which make use of this interface.

Further author information -

P.S. email: Prasanna.Sundararajan@xilinx.com

S.A.G. email: Steven.Guccione@xilinx.com



2. THE XVPI HARDWARE INTERFACE

Because this approach is a combined hardware / software solution, it is assumed that some microprocessor is interfaced

to the SelectMap port of the Virtex device. The microprocessor will initially provide all of the control and data for

the Virtex device, and maintains the responsibility for reading and writing data to the SelectMap port over some

bus.

The Virtex family of devices reserves a set of IO pins which provide the interface to the SelectMap port. In

XVPI, this interface is attached to some register called the Virtex Interface Register or VIR which is accessible by

the microprocessor. The only functionality required by the system is a readable and writable VIR register which

accesses the SelectMap port. Table 1 describes the VIR used by XVPI. Note that all signals used by the SelectMap

interface are connected to this register. This provides the simplest possible hardware interface to quickly provide

operational hardware.

Bits Name Direction Description

0-7 DATA In/Out Bi-directional Databus. Data is written during con�guration and

read during readback

8 CS Out Chip Select input enables SelectMAP data bus. To write or read

data onto or from the data bus, CS signal must be asserted low.

9 PROG Out Asynchronous reset to con�guration logic

10 INIT In/Out Indicates Initialization progress and con�guration error, if any.

11 M0 Out Mode Bit 0

12 M1 Out Mode Bit 1

13 M2 Out Mode Bit 2

14 CCLK Out Con�guration Clock that synchronizes the loading and reading of

the data during con�guration and readback.

15 RW Out SelectMap Read/Write Signal. When asserted low, the RW signal

indicates data being written to the data bus. When asserted high,

RW indicates data is read from the data bus.

16 BUSY In SelectMap Port Busy Signal. When CS is asserted, BUSY output

indicates when the Virtex can accept another byte. If BUSY is low,

Virtex reads the data bus on the next rising CCLK edge that both

CS and RW are asserted Low. If BUSY is high, the current byte

is Ignored and must be reloaded during next CCLK rising edge

when BUSY is low. When CS not asserted BUSY is tri-stated and

asserted high.

17 DONE In Con�guration Complete Signal

18 CAPTURE Out State Capture enable for readback

19 CAPCLK Out State Capture Clock for readback

20 SWCLK Out Software Control to perform clock stepping. This bit should be tied

up with any one of the Global Clock bu�ers on the Virtex chip.

21-31 System de�ned Input/Output Bits

Table 1. Signals in a Virtex Interface Register.

While Table 1 de�nes a suggested implementation of the VIR register, it is quite simple to use other variations.

The software which communicates with the VIR is con�gurable and may be modi�ed to reassign bits in this register.

Note that in the table, the In and Out direction is de�ned with respect to the VIR. That is, In means Virtex chip

writes to the VIR and Out means the VIR writes to the Virtex Chip.

Once this register is de�ned and provided access through the device driver, data can be read from and written

to the Virtex device with no modi�cation to the supplied software API. A diagram illustrating XVPI's hardware

interface is shown in Figure 1. More information on the API is provided in the next section.



Figure 1. The XVPI hardware interface.

3. THE XVPI SOFTWARE INTERFACE

Because the goal of XVPI is to help designers quickly get functioning Virtex hardware, a complete software API

which drives the VIR is supplied with XVPI. While this provides a relatively slow interface, it should require little

or no software modi�cation by the designer and requires only a single register as an interface.

The XVPI Application Program Interface (API) is written completely in the C language. It provides a small,

simple, layered API which interacts directly with the VIR. This layered design is implemented so that functions

and entire layers can be replaced incrementally by faster, hardware assisted versions. This will increase system

performance without changing the functionality of the system or requiring changes to higher levels of the software.

Table 2 describes the layers and their functions in the API. Layer 0 is the most basic layer and consists of the

XVPI Open() and XVPI Close() calls. In simple embedded systems, these functions may do nothing but return

a \success" value. In systems with some operating system, the XVPI open() call is used to initialize hardware,

software and device drivers and provide access to the Virtex device, usually through the VIR register. Similarly the

XVPI close() call is used to perform any housekeeping necessary when de-establishing a connection.

Layer Routines in Layer

Layer 0 XVPI Open(), XVPI Close()

Layer 1 XVPI Read(), XVPI Write()

Layer 2 XVPI ReadBlock(), XVPI WriteBlock(), XVPI Abort(), XVPI Reset()

Table 2. API Layers.

Layer 1 provides the direct access to the VIR register. Two functions make up this layer of the API: XVPI Read()

and XVPI Write(). In simple embedded systems, these function will read and write the memory or IO location

mapped to the VIR register. In systems with some operating system support, these function will typically make calls



to some device driver to access the VIR register. These functions should access all bits in the register atomically,

that is, in a single cycle. This assures that invalid intermediate signals are not sent to or read from the Virtex device

via the VIR register.

The top layer of the XVPI interface, Layer 2, contains control routines and routines to access blocks of data

from the SelectMap port of the Virtex device. The data access routines, XVPI ReadBlock() and XVPI WriteBlock()

are used to read and write arrays of bytes to the Virtex SelectMap port. In the default inmplementation, this is

accomplished by software that makes repeated calls to the Layer 1 XVPI Read() and XVPI Write() call, both reading

and writing data, as well as manipulating the necessary control signals.

Of course, software toggling of all of the control signals, including the clock, to read and write data in this fashion

is relatively slow. But for the applications which do not require high performance for download and readback of

con�guration data, this solution may be perfectly acceptable.

The remaining Layer 2 API components are XVPI Abort() and XVPI Reset(). The XVPI Abort() call is used to

supply a Virtex \abort sequence". This is a synchronization primitive involving the manipulation of the Chip Select

(CS) and Read / Write (RW) signals. It is used primarily when restarting the software and resynchronizing with the

Virtex device. It may also be used in situation where reads and writes alternate, to ensure that the bus maintains

the correct state. Lastly, the XVPI Reset() call is used simply to provide a hardware reset to the Virtex device.

4. HARDWARE ACCELERATION

While XVPI permits Virtex hardware to be designed with a minimum of hardware and software design e�ort, the

resulting interface is necessarily somewhat slow. Every transition of a signal in the SelectMap bus requires a write to

the VIR register. In simple embedded systems, this may rquire as little as a single processor cycle. In more complex

systems with operating system overheads, this may consume as much as thousands of processor cycles. Depending

on the application this may be an unacceptable overhead.

XVPI, however, was designed not only to help produce working hardware quickly, but to provide a simple path to

accelerate performance once a working system has been established. Some simple modi�cations present themselves

immediately. Using software to clock data into and out of a register is somewhat unnecessary. The VIR register

can be modi�ed providing these clock signals in hardware, eliminating code from the Layer 1 XVPI Read() and

XVPI Write() routines, improving performance.

Similar bus hardware interface modi�cations can be used to eliminate the need to manipulate control signals such

as Chip Select (CS) and Read / Write (RW), further reducing the code in Layer 1. Finally, if hardware assisted

block access such as DMA is available, Layer2 may be replaced by these calls, eliminating the dependence on Layer

1 entirely.

What is notable here is that a system can be brought up quickly, then enhanced incrementally. Once a stable

system has been established, o�setting hardware and software changes can be made to gradually increase performance,

without changing the software API.

5. INTERFACING TO JBITS

JBits is a set of Java classes that provide an Application Program Interface (API) into the Xilinx FPGA family

con�guration bitstream2.4 This interface operates on either bitstreams generated by Xilinx design tools, or on

bitstreams read back from actual hardware. This provides the capability of designing, modifying and dynamically

recon�guring circuits in Xilinx FPGA devices.3 While JBits can modify Virtex con�guration bitstreams o�-line, it

may also be used to modify con�guration data in operating hardware.

JBits communicates with Virtex hardware through a standard interface called XHWIF. This interface supplies a

high-level Java API to perform functions such as con�guration bitstream download, con�guration bitstream readback,

reset, clock control and other similar functions. Once the XVPI interface was established, it was relatively simple to

construct an XHWIF interface which communicated directly with XVPI. Figure 2 shows a diagram of how XHWIF

uses XVPI to provide support for JBits and JBits applications.

While the JBits design capabilities may not be of direct interest to many Virtex users, the JBits tool suite comes

with utilities that should be useful to most designers. The �rst is the BoardScope is a graphical and interactive debug

tool.6 BoardScope enables users to look examine internal state of the Virtex device in various formats. The second



Figure 2. XVPI's system level interface to JBits.

capability provided by XHWIF is remote network access. Any XHWIF application, including the BoardScope debug

tool, can be run remotely across a network. This permits limited hardware resources to be easily shared among a

number of users. Figure 2 shows a diagram of this remote network interface via the XHWIFServer remote server

software.

6. CONCLUSIONS

XVPI provides a set of hardware design speci�cations combined with software and software API speci�cations to

produce a 
exible system to bring up and access Virtex-based hardware. Provided with a simple hardware interface

consisting of a single software accessible register, XVPI can be used to bring up a complete Virtex-based hardware

system with little or no additional e�ort.

This initial con�guration is completely software-driven. All hardware control and handshaking is handled by

supplied XVPI software routines. While this makes functionality available quickly, performance may be too slow

for some applications. In these cases, hardware and software control may be traded o� incrementally, increasing

performance. This can be accomplished in stages, without changing the software interfaces or modifying upper

layers of the software API. In addition, the JBits tool suite, with accompanying BoardScope interactive graphical

debug tool along with remote network access is made available through a supplied interface.

In early commercial Virtex board designs, much of the functionality of the SelectMap fast con�guration port was

not implemented. This is often the case with new and somewhat unusual hardware capabilities. To help to remedy

this situation, XVPI was implemented. Supplied with complete source code, XVPI enables designers to bring up new

Virtex hardware, along with a substantial software tool set, all by specifying a simple single register interface. And

once this hardware is functional, XVPI permits incremental performance increases to be made without disturbing

existing and operational parts of the system.



REFERENCES

1. Carl Carmichael. Virtex FPGA series con�guration and readback. Xilinx Application Note XAPP138, version

1.1, Xilinx, Inc., July 1999.

2. Steven A. Guccione and Delon Levi. XBI: A java-based interface to FPGA hardware. In John Schewel, edi-

tor, Con�gurable Computing: Technology and Applications, Proc. SPIE 3526, pages 97{102, Bellingham, WA,

November 1998. SPIE { The International Society for Optical Engineering.

3. Steven A. Guccione and Delon Levi. Design advantages of run-time recon�guration. In John Schewel, editor,

Recon�gurable Technology: FPGAs for Computing and Applications, Proc. SPIE 3844, pages 87{92, Bellingham,

WA, September 1999. SPIE { The International Society for Optical Engineering.

4. Steven A. Guccione, Delon Levi, and Prasanna Sundararajan. JBits: A java-based interface for recon�gurable

computing. In Richard Katz, editor, Second Annual Military and Aerospace Applications of Programmable Devices

and Technologies Conference (MAPLD), September 1999.

5. Steve Kelem. Virtex con�guration architecture advanced users' guide. Xilinx Application Note XAPP151, version

1.1, Xilinx, Inc., July 1999.

6. Delon Levi and Steven A. Guccione. BoardScope: A debug tool for recon�gurable systems. In John Schewel,

editor, Con�gurable Computing Technology and its use in High Performance Computing, DSP and Systems Engi-

neering, Proc. SPIE Photonics East, pages 239{246, Bellingham, WA, November 1998. SPIE { The International

Society for Optical Engineering.

7. Xilinx, Inc. Xilinx Data Book, 2000.


